港湾設計業務シリーズ

二重矢板式係船岸

Ver 2.X.X

商品概説書

✓ ☆ ケンティズソリューション

〒730-0833 広島市中区江波本町4-22 Tel (082)293-1231 Fax (082)292-0752 URL https://www.aec-soft.co.jp Mail:support@aec-soft.co.jp

1.	概要	1
-	ー1. システムの特長	1
-	-2.システムの制限事項	2
2.	機能説明	3
2	2-1.見かけの震度	3
2	2-2. 動水圧	4
2	2-3. 土圧	5
		6
		7
	地震時一主働土圧の考え方	. 8
:	? — 4 残留水圧	12
-	- ··· ※四外//···································	13
•	- · · · · · · · · · · · · · · · · · · ·	13
		14
	当日久饭	17
	2-6 矢板根入れ長の検討	18
-	フリーアースサポート法	18
	たわみ曲線法	19
		21
	- 7 水平方向地般反力係数の質定方法	22
	- 7. ホークトに加入したのの学生のな	23
4	- 0. 八版文はの前昇	23
	計算の減少	20
	① 辟休に作田する从力の質定 (25
		20
	201, 6, 000設定 ·································	20
	③文側側に作用9 る地盤及刀の昇走	20
	(4) 文側側に作用9る外刀の昇正	29
	(5)壁体に作用する外力の身定	30
	 (6)h, e, θの算定 (6)h, e, θο (7) (7) (8) (9) <li< td=""><td>31</td></li<>	31
	(フ)h, e, θの判定	33
	⑧矢板天端位置での水平変位の算定	33
2	2-9. 大堀らの方法	. 34
	中詰完了時	. 35
	水平外力作用時	. 36
	境界条件	37
2	2-10. 応力照査	. 39
2	2-11. タイ材の検討	. 40
2	2-12. 腹起こしの検討	. 41
2	2-13. 中詰土のせん断抵抗	. 42
	変形モーメント	. 42
	抵抗モーメント	. 43
	2-14. 壁体の滑動	. 44
2		
2	2 — 15. 性能照査に用いる部分係数(H30港湾基準)	. 45
	2 - 15. 性能照査に用いる部分係数(H30港湾基準)	. 45
3.	2 – 15. 性能照査に用いる部分係数(H30港湾基準) 補足資料	. 45 . 47

一目次一

1. 概要

<u>1-1.システムの特長</u>

本システムは、港湾・漁港構造物の中の1つである「二重矢板式係船岸」の設計業務を支援するために開発されたシステムです。データは、入力画面を用いることにより比較的簡単に入力することができます。

計算外力として土圧、残留水圧、動水圧、上載荷重の考慮ができ、矢板応力度、矢板根入 れ長、矢板の変位、タイ材、腹起こし、中詰土のせん断抵抗、壁体の滑動の検討が可能で す。

本システムには以下のような特長があります。

- ・ 設計基準は許容応力度法、信頼性設計法に準拠しております。
- 矢板応力度の計算、タイ材、腹起こしの検討では各部材でトライアル計算を行います。
- 矢板の計算はフリーアースサポート法、たわみ曲線法、ロウの方法が選択できます。
- ・ 矢板の変位の計算はセルの計算法で行います。
- ・ プログラム内部に鋼矢板データを保持しており、矢板断面が自動選択/任意選択できます。
- 現況の腐食しろ、腐食速度と耐用年数から腐食後の矢板の断面性能を自動計算します。
- プログラム内部にタイ材・腹起こし材を保持しており、任意選択ができます。
- ・ 印刷イメージを画面に表示し、確認することができます。
- ・ 任意の鋼矢板データ/腹起こし材データを追加・修正することができます。

<u>1-2.システムの制限事項</u>

[データ容量]
検討潮位 検討条件毎に 1潮位
検討条件 最大 3条件(常時 地震時 津波引波)
層データ数 最大 15層
鋼管矢板データ数 最大 10データ
追加矢板データ数 最大 30データ
追加腹起こし材データ数 最大 30データ

<u>2. 機能説明</u>

<u>2-1.見かけの震度</u>

本プログラムでは、見かけの震度の計算方法は荒井・横井の提案式を用いています。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P356

参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P154

荒井・横井の提案式

$$k' = \frac{2(\sum \gamma h + \sum \gamma_t h_j + w) + \gamma_t h}{2\{\sum \gamma h_i + \sum (\gamma_t - 10)h_j + w\} + (\gamma_t - 10)h} \times k$$

ここに

h_i :残留水位以上の土層の厚さ	<i>(m)</i>
h_j :残留水位以下の土圧を求めようとする層より上の土層の厚さ	<i>(m)</i>
h:残留水位より下の土圧を求めようとする土層の厚さ	<i>(m)</i>
γ:水位面上の土単位体積重量	(kN/m^3)
γ_t :水で飽和した土の空気中における単位体積重量	(kN/m^3)
w:単位体積当たりの載荷重	(kN/m^2)
k:設計震度	
<i>k</i> ':見かけの震度	

本システムでは、地震時に作用する外力として動水圧を考慮しています。 算定式は次式を使用しています。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成19年7月」P380

動水圧

動水圧合力及び作用点位置

$$p_{dw} = \pm \frac{7}{8} k \gamma_w \sqrt{Hy}$$

$$P_{dw} = \frac{7}{12} k \gamma_w \sqrt{H} y^{\frac{3}{2}}$$
$$h_{dw} = \frac{2}{5} H$$

※左側(海側)より荷重が作用する場合の荷重分布となります ここに

p_{dw} :動水圧	(kN/m^2)
k:設計震度	
γ_w :海水の単位体積重量	(kN/m^3)
y:水面から動水圧を求める点までの深さ	<i>(m)</i>
H:直立壁前面における水深	<i>(m)</i>
P_{dw} :動水圧の合力	(kN/m)

h_{dw}:動水圧を求める点から動水圧合力の作用点までの距離 (m)

本システムでは壁体に作用する主働土圧と受働土圧の位置は次のようになります。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成19年7月」P372~377 参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P146~154

<u>砂質土</u>

主働土圧強度 p_a (kN/m^2)

$$p_a = K_a \cos \delta \left[\Sigma \gamma h + \frac{w \cos \varphi}{\cos(\varphi - \beta)} \right]$$

主働土圧係数 K_a (kN/m^2)

$$K_{a} = \frac{\cos^{2}(\phi - \varphi)}{\cos^{2}\varphi\cos(\delta + \varphi) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta)}{\cos(\delta + \varphi)\cos(\phi - \beta)}}\right]^{2}}$$
(常時 · 永続状態)

$$K_{a} = \frac{\cos^{2}(\phi - \phi - \theta)}{\cos \theta \cos^{2} \phi \cos(\delta + \phi + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta - \theta)}{\cos(\delta + \phi + \theta)\cos(\phi - \beta)}}\right]^{2}} \qquad (\text{transf} \bullet \text{L1transf})$$

受働土圧強度 $p_p (kN/m^2)$

$$p_{p} = K_{p} \cos \delta \left[\Sigma \gamma h + \frac{w \cos \varphi}{\cos(\varphi - \beta)} \right]$$

受働土圧係数 $K_p(kN/m^2)$

$$K_{p} = \frac{\cos^{2}(\phi + \varphi)}{\cos^{2}\varphi\cos(\delta + \varphi) \left[1 - \sqrt{\frac{\sin(\phi - \delta)\sin(\phi + \beta)}{\cos(\delta + \varphi)\cos(\phi - \beta)}}\right]^{2}}$$
(常時 · 永続状態)

$$K_{p} = \frac{\cos^{2}(\phi + \varphi - \theta)}{\cos \theta \cos^{2} \varphi \cos(\delta + \varphi - \theta) \left[1 + \sqrt{\frac{\sin(\phi - \delta)\sin(\phi + \beta - \theta)}{\cos(\delta + \varphi - \theta)\cos(\phi - \beta)}}\right]^{2}} \quad (\text{u} \gtrsim \text{Homoson})$$

ここに

γ:土の単位体積重量	(kN/m^3)
h:土層厚	<i>(m)</i>
	(度)
φ :壁面が鉛直となす角度	(度)
β:地表面が水平となす角度	(度)
δ :壁面摩擦角	(度)
heta:地震合成角	(度)
$k: 震度(\theta = \tan^{-1}k または \theta = \tan^{-1}k')$	
k':みかけの震度	

主働土圧強度 p_a (kN/m^2)

(式 - 1)
$$p_a = \Sigma \gamma h + w - 2c$$

(式 - 2) $p_a = K_c(\Sigma \gamma h + w)$

(常時・永続状態)

次に示される(式-1)あるいは(式-2)のうち、構造物に危険となる土圧分布を用いるか (漁港基準)あるいは、(式-1)のみを用いるか(港湾基準)の選択がプログラムで可能 です。また、(式-2)のみを用いることも可能です。(式-1)を使用した場合に生じる負の土 圧領域は考慮せず、正の土圧が発生する深さまでは土圧を0とします。

(式 - 3)
$$p_a = \frac{(\Sigma\gamma h + w)\sin(\zeta + \theta)}{\cos\theta\sin\zeta} - \frac{c}{\cos\theta\sin\zeta}$$

(式 - 4) $p_a = K_c(\Sigma\gamma h + w)$ (地震時・L1地震動)
 $\zeta = \tan^{-1}\sqrt{1 - \left(\frac{\Sigma\gamma h + 2w}{2c}\right)\tan\theta}$

(式-3)あるいは(式-4)のうち、構造物に危険となる土圧分布を用いるのか、あるいは、 (式-3)のみを用いるのかの選択がプログラムで可能です。また、(式-4)のみ用いること も可能です。

(式-3、式-4)の比較を行って土圧を計算する場合で、(式-3)のと算定式の√内が負になる場合、次の4項目の選択が可能です。

- 1. 崩壊角規定値
- 2. 岡部式

$$p_{a} = \frac{(\Sigma \gamma h + w) \sin(\alpha + \theta)}{\cos \theta \sin \alpha} - \frac{c}{\cos \theta \sin \alpha}$$
$$\alpha = 90^{\circ} - \mu \quad , \quad \mu = \tan^{-1} \frac{\overline{a}}{\sqrt{\overline{b}^{2} - \overline{a}^{2}}}$$
$$\overline{a} = \sin \theta \quad , \quad \overline{b} = \sin \theta + \frac{2c \cdot \cos \theta}{\Sigma \gamma h + w}$$

- 3. 常時土圧式
- 4. $\Sigma \gamma h + w$

受働土圧強度 $p_p(kN/m^2)$

$$p_p = \Sigma \gamma h + w - 2c$$

ここに

γ:土の単位体積重量	(kN/m^3)
h:土層厚	<i>(m)</i>
<i>c</i> :粘着力	(kN/m^2)
K_c : 圧密平衡係数(=0.5)	
w:地表面単位面積当たり載荷重	(kN/m^2)
$lpha, \zeta:$ 崩壊面が水平となす角	(度)
heta:地震合成角	(度)
$k: 震度(\theta = \tan^{-1}k または \theta = \tan^{-1}k')$	
k':見かけの震度	

地震時ー主働土圧の考え方

本プログラムでは、地震時粘性土主働土圧の計算方法を以下の4つの方法の中から選択しま す。次の文献の解釈によります。設計事例集等に使用されている方法はBの方法です。 ※日本港湾協会,港湾の施設の技術上の基準・同解説(平成19年7月 P377)

(3) 海底面下における粘性土の地震時土圧を算出する場合、海底面においては見掛けの震度を用いて土圧を求めるが、海底面下10m以下においては震度を0として土圧を求めることができる。ただし、海底面下10mにおける土圧が海底面より小さい場合には、海底面における値を用いるべきである。

A. 上・下共に見かけの震度を用いて土圧を計算する

B. 海底面~海底面-10m間の土圧強度を直線補間(土層下限値のみ補間で算出)

C. 海底面~海底面-10m間の土圧強度を直線補間(土層上・下限値共に補間で算出)

D. 海底面~海底面-10m間の見かけの震度を直線補間

※ 上·下共に見かけの震度を用いる場合、海底面-10m以下の粘土層についてのみ、見かけの震度を0として計算します。

(Aの方法を選択した場合)

海底面~海底面-10m以内に粘土層がある場合でも、全て見かけの震度を考慮し、計算 式の選択により(式-3、式-4)の構造物に危険側となる値かあるいは、(式-3)・(式-4)のみ で計算します。

海底面-10m以深の粘土層については、見かけの震度を0として、計算式の選択により (式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・(式-2)のみで計算します。 尚、層の下限値が層の上限値よりも小さくなる場合は、層の上限値を層の下限の土圧とす るかどうかの選択が可能です。

(Bの方法を選択した場合)

海底面~海底面-10m以内に粘土層がある場合に、層の上限の土圧は、見かけの震度を 考慮し、計算式の選択により(式-3、式-4)の構造物に危険側となる値かあるいは、(式-3)・ (式-4)のみで計算します。

層の下限の土圧は、その土層が海底面-10m位置まであると仮定し、見かけの震度を0 として、計算式の選択により(式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・ (式-2)のみで計算し、実際の層の下限位置で直線補完を行います。

海底面-10m以深の粘土層については、見かけの震度を0として、計算式の選択により (式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・(式-2)のみで計算します。 尚、層の下限値が層の上限値よりも小さくなる場合は、層の上限値を層の下限の土圧とす るかどうかの選択が可能です。

(Cの方法を選択した場合)

海底面~海底面-10m以内に粘土層がある場合に、その粘性土が一様にあるものとし、 層の上限位置を海底面位置と仮定して、見かけの震度を考慮し、計算式の選択により(式-3、式-4)の構造物に危険側となる値かあるいは、(式-3)・(式-4)のみで計算し、実際の層 の上限位置で直線補完を行います。

層の下限の土圧は、その土層が海底面-10m位置まであると仮定し、見かけの震度を0 として、計算式の選択により(式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・ (式-2)のみで計算し、実際の層の下限位置で直線補完を行います。尚、層の上限・下限の 土圧強度が海底面位置の土圧強度よりも小さくなった場合、海底面位置の土圧強度を採用 するかどうかの選択が可能です。

海底面-10m以深の粘土層については、見かけの震度を0として、計算式の選択により (式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・(式-2)のみで計算します。 尚、層の下限値が層の上限値よりも小さくなる場合は、層の上限値を層の下限の土圧とす るかどうかの選択が可能です。

※ 粘性土が設計海底面を挟む場合、使用する見かけの震度は、実際の土層による見かけ の震度です。

(Dの方法を選択した場合)

海底面~海底面-10m以内に粘土層がある場合に、実際の土層の見かけの震度を計算し、 その見かけの震度を設計海底面の見かけの震度と仮定します。その見かけの震度が、海底 面-10m位置で0.0になるものとして実際の土層上限・下限で直線補完を行います。求め た土層上限の見かけの震度を用いて、計算式の選択により(式-3、式-4)の構造物に危険側 となる値かあるいは、(式-3)・(式-4)のみで計算します。

層の下限の土圧は、求めた層の下限値の見かけの震度を用いて、計算式の選択により(式-3、式-4)の構造物に危険側となる値かあるいは、(式-3)・(式-4)のみで計算します。尚、 層の上限・下限の土圧強度が海底面位置の土圧強度よりも小さくなった場合、海底面位置 の土圧強度を採用するかどうかの選択が可能です。

海底面-10m以深の粘土層については、見かけの震度を0として、計算式の選択により (式-1、式-2)の構造物に危険側となる値かあるいは、(式-1)・(式-2)のみで計算します。 尚、層の下限値が層の上限値よりも小さくなる場合は、層の上限値を層の下限の土圧とす るかどうかの選択が可能です。

※ 粘性土が設計海底面を挟む場合、使用する見かけの震度は、実際の土層による見かけ の震度です。

2-4. 残留水圧

中詰土内の水位が潮位よりも高い場合、以下に示す残留水圧が作用するものとします。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P358 参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P155~156

γ_w:水の単位体積重量

<u>鋼矢板</u>

腐食後の断面性能の計算方法として以下の2つの内のどちらかが選択できます。

- a. 腐食後の断面係数を「鋼矢板の腐食後の断面係数のグラフ」から直接引用し、その値 に鋼矢板の高さを乗じて断面二次モーメントを求めます。
- b. 「鋼矢板の腐食後の断面係数のグラフ」から残存断面性能率を引用し、その値をそれ ぞれ腐食前の断面係数、断面二次モーメントに乗じて腐食後の断面諸値を求めます。

以下に a を指定した場合の詳細について記述します。

断面係数

システム内部に「鋼矢板の腐食後の断面係数のグラフ」を保持しており、 $\alpha = t_2/t_1$ から腐食後の断面係数を引用します。

断面二次モーメント

次式により算出します。

 $I = Z \times \left[h - (t_1 + t_2) \times 0.5\right]$

ここに

- *I*:腐食後の断面二次モーメント (cm⁴/m)
- Z:腐食後の断面係数 (cm³/m)
- *h*:鋼矢板の上縁までの高さ (*cm*)
- t1:鋼矢板の腐食しろ (cm)
- t,:鋼矢板の腐食しろ (cm)

<u>鋼管矢板</u>

継手有効間隔

直接入力の他、以下の5つのタイプについては継手有効間隔を自動的に算出します。

L-T型(二港湾型)L- 65× 65× 8	$B = 76.0 + \sqrt{\left(\frac{D}{2}\right)^2 - 80^2} - \frac{D}{2}$
L-T型(二港湾型)L- 75× 75× 9	$B = 85.5 + \sqrt{\left(\frac{D}{2}\right)^2 - 90^2} - \frac{D}{2}$
L-T型(二港湾型)L-100× 75×10	$B = 110 + \sqrt{\left(\frac{D}{2}\right)^2 - 90^2} - \frac{D}{2}$
P-T型(パイプT型)	B=180.0
P-P型(パイプ型)	B = 247.8
ここに	
B:鋼管矢板の継手有効間隔 (mm) D:鋼管矢板の外形 (mm)	

図心軸に関する断面二次モーメント

- a. 腐食がない場合、あるいは腐食しろ b. 腐食しろ t_1, t_2 が異なる場合 t_1, t_2 が同じ値の場合
- $I_{nx} = \frac{\pi}{64} \left(D^4 d^4 \right)$ ここに I_{nx} :図心軸に関する断面二次モーメント

D:外径

d:内径

$$I_{nx} = I_x - Ay_0^2$$

ここに

 I_{nx} :図心軸に関する断面二次モーメント I_x :x軸に関する断面二次モーメント A:断面積 y₀: x軸と図心軸との離れ

計算過程の詳細について、次のように断面を分割して計算を行います。

	断面積	× 軸からの距離	断面二次モーメント
	A_{i}	${\mathcal Y}_i$	$I_{_{xi}}$
1	$A_1 = \frac{\pi D_1^2}{8}$	$y_1 = \frac{4}{3\pi} \cdot \frac{D_1}{2}$	$I_{x1} = \frac{\pi D_1^4}{128}$
2	$A_2 = \frac{\pi D_2^2}{8}$	$y_2 = \frac{4}{3\pi} \cdot \frac{D_2}{2} \times (-1)$	$I_{x2} = \frac{\pi D_2^4}{128}$
3	$A_3 = \frac{\pi D_3^2}{4} \times (-1)$	$y_3 = 0$	$I_{x3} = \frac{\pi D_3^4}{64} \times (-1)$
合計	$A_0 = \Sigma A_i$		$I_{x0} = \Sigma I_{xi}$

x軸における図心軸の距離

断面二次モーメント

$$y_0 = \frac{\sum A_i y_i}{A_0}$$

 $I = I_{x0} - A_0 y_0^2$

断面係数

断面係数は腐食後の断面二次モーメントを用いて、次式から計算します 腐食しろ_{t1},t₂が異なる場合、最小の断面係数を採用します。

$$Z_{c} = \frac{I_{nx}}{y_{c}} \qquad \qquad Z_{t} = \frac{I_{nx}}{y_{t}}$$
$$Z = \min(Z_{c} \quad , \quad Z_{t})$$

ここに

Z:断面係数
 Z_c:上縁~図心軸における断面係数
 Z_t:下縁~図心軸における断面係数
 I_{nx}:図心軸に関する断面二次モーメント
 y_c:上縁と図心軸との離れ
 y_t:下縁と図心軸との離れ

本プログラムでは、溝形鋼の腐食前の断面性能は、システム内部に保持しています。腐食 後の断面係数は次式により計算します。

$$Z = \frac{B \cdot H^{3} - (B - t_{1})(H - 2t_{2})^{3}}{6H}$$

必要根入れ長はフリーアースサポート法、たわみ曲線法、ロウの方法から算出された値で 最大となる根入れ長を選定します。

<u>フリーアースサポート法</u>

必要根入れ長Lは、以下の式を満足するように設定します。

漁港基準(許容応力度法)

港湾基準(H30信頼性設計法)

M_{P}	$\geq FM_A$	
M_A	$=\sum P_{Ai}l$	Ai
M_{P}	$=\sum P_{P_i}l_i$	Pi

永続状態 L1地震動 $\gamma_R M_P \geq \gamma_S M_A$ $M_{P} \ge m M_{A}$ $M_A = \sum P_{Ai} l_{Ai}$

 $M_{A} = \sum P_{Ai} l_{Ai}$ $M_{P} = \sum P_{Pi} l_{Pi}$

ここに

M _A :主働側に作用する荷重によるタイ材取付点まわりのモーメント	$(kN \cdot m)$
<i>P_{Ai}</i> :主働側に作用する荷重(主働土圧・残留水圧・動水圧)	(kN)
l _{ai} :主働側に作用する荷重のタイ材取付点~荷重作用位置までの距離	(<i>m</i>)
M _p :受働側に作用する荷重によるタイ材取付点まわりのモーメント	$(kN \cdot m)$
<i>P_{Pi}</i> :受働側に作用する荷重(受働土圧)	(kN)
l _{ri} :受働側に作用する荷重のタイ材取付点位置~荷重作用位置までの距離	(<i>m</i>)
F:安全率	(許容応力度法)
<i>m</i> :調整係数	(H30港湾)
γ _s :主働側に乗じる部分係数	(H30港湾)
γ _R :受働側に乗じる部分係数	(H30港湾)

 $M_P = \sum P_{Pi} l_{Pi}$

<u>たわみ曲線法</u>

たわみ曲線が鉛直線と接するものとして、たわみ曲線を描き、根入れ下端を変えて たわみ角=0となる位置を検索し、見つかった場合には設計海底面~たわみ角=0区間までの 長さLに調整係数もしくは安全率をかけた値を必要根入れ長として算出します。

上記のように設定した場合、

天端~タイ材取付点位置区間での支配方程式は(1)

タイ材取付点位置~矢板下端区間での支配方程式は(2)で与えられます。

$$EI\frac{d^4 y_1}{dx_1^4} = B \cdot p(x_1) \quad -(1)$$
$$EI\frac{d^4 y_2}{dx_2^4} = B \cdot p(x_2) \quad -(2)$$

ここに

E:矢板壁のヤング係数	(kN/m^2)
I:矢板壁の断面二次モーメント	(m^4)
B : 矢板壁幅	<i>(m)</i>
p(x):荷重関数	(kN/m^2)
x_1 :天端位置($x_1 = 0$)〜タイ材取付点位置($x_1 = l_1$)までの深さ	<i>(m)</i>
$x_2:$ タイ材取付点位置($x_2 = 0$)~矢板下端位置($x_2 = l_2$)までの深さ	<i>(m)</i>
y ₁ :天端位置~タイ材取付点位置区間での矢板変位	<i>(m)</i>
y₂:タイ材取付点位置~矢板下端位置での矢板変位	<i>(m)</i>

式(1)および式(2)の解は式(3)および式(4)になります。

$$y_{1}(x_{1}) = a_{1} + b_{1}x_{1} + c_{1}x_{1}^{2} + d_{1}x_{1}^{3} + \frac{B}{EI} \iiint p(x_{1})(dx_{1})^{4} \quad -(3)$$

$$y_{2}(x_{2}) = a_{2} + b_{2}x_{2} + c_{2}x_{2}^{2} + d_{2}x_{2}^{3} + \frac{B}{EI} \iiint p(x_{2})(dx_{2})^{4} \quad -(4)$$

ここに

 $a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2$:積分定数

ここに

A_n:タイ材取付点反力 (kN)

支配方程式である式(3)と式(4)と、境界条件式である式(5)を比べますと、未知数が積分 定数と取付点反力の9個に対して境界条件が10個であり、境界条件の方が1つ多くなっ ています。それ故、鋼矢板壁下端における3個の境界条件のうち2個を取出し、除いた条 件式を満足するまで、順次繰り返し計算を行い根入れ長を決定します。

このようにして、根入れ長が決定されればすべての未知数(積分定数、タイロッド取付 点反力)が決まります。故に、先の式(3)と式(4)より矢板壁各部の4諸量(変位、たわみ 角、曲げモーメント、せん断力)は全て得られます。 <u>ロウの方法</u>

ロウの方法は、根入れ部を弾性支承上のはりとして解く方法で、基本式は以下のようにな っています。

$$\frac{d^4 y}{dx^4} EI = p(x) = P_{AD} + K_{AD} \cdot \gamma \cdot x - K_0 \cdot \gamma \cdot x - \left(\frac{l_h}{D_F r_t}\right) xy$$

ここに

 E: 矢板のヤング係数 (MN/m^2)

 I: 矢板の単位幅当たりの断面二次モーメント (m^4/m)
 $P_{AD}: 海水面における主働土圧と残留水圧による荷重強度$ $(MN/m^2/m)$
 $K_{AD}: 矢板根入れ部の主働土圧係数$ (MN/m^3)
 $\gamma: 土の単位体積重量$ (MN/m^3)
 $K_0: 静止土圧係数$ (MN/m^3)
 $D_F: 矢板の収束根入れ長$ (m)

 $r_t: 根入れ部前面の第一次の正の反力土圧の作用深さと<math>D_F$ との比

本システムではフリーアースサポート法で計算した根入れ長がロウの方法による根入れ長 を満足するように決定します。ここでは、値の大きくなる方の値を用いています。

$$\delta_N \ge 4.9510 \times \omega^{-0.2} - 0.2486$$
 (永続状態)
 $\delta_S \ge 5.0916 \times \omega^{-0.2} - 0.2591$ (地震作用時)

ここに

$$\delta_N, \delta_s \coloneqq D_F / H_T$$
 (m)

 D_F :矢板の根入れ長
 (m)

 $H_T: タイ材取付点から海底面までの高さ$
 (m)

 $\omega: シミラリティナンバー(= \rho \cdot l_h)$
 (m)

 $\rho: \nabla \nu + \hat{\nu} \vee U \neg \tau + \nu \vee \neg - (= H_T^4 / E/I)$
 (m³ / MN)

 $E: 矢板のヤング係数$
 (kN / m²)

 $I: 矢板の単位幅当たりの断面二次モーメント$
 (m⁴ / m)

 $l_h: 矢板の地盤反力係数$
 (MN / m³)

最大曲げモーメント及び、タイ材取付点反力については、仮想ばり法で求めた結果を下記 の式を用いて修正します。

 $\mu_N \ge 3.8625 \times \omega^{-0.2} + 0.2255$ (永続状態) $\mu_S \ge 4.5647 \times \omega^{-0.2} + 0.1329$ (地震作用時) $\tau_N \ge 1.8259 \times \omega^{-0.2} + 0.6232$ (永続状態) $\tau_S \ge 2.3174 \times \omega^{-0.2} + 0.5514$ (地震作用時)

ここに

 $\mu_N, \mu_S := M_F / M_T$

M_F:たわみ曲線解析における収束根入れ長のときの最大曲げモーメント

 M_T :タイ材取付点及び海底面を支点とした仮想ばり法により算定された最大曲げモーメント $\tau_N, \tau_S \coloneqq T_F / T_T$

T_r:たわみ曲線解析における収束根入れ長のときのタイ材張力

T:たわみ仮想ばり法により算定されたタイ材張力

参照:「日本道路協会,道路橋示方書・同解説Ⅳ下部構造編 平成24年3月」P285 参照:「鋼管杭・鋼矢板技術協会,鋼矢板 設計から施工まで 2014年 改定新版」P102 参照:「第41回地盤工学研究発表会,杭軸直角方向地盤反力係数の推定方法に関する一提案」

水平方向地盤反力係数K値の計算方法として、以下の6種類を用意しています。

- 1) K值直接入力
- 2) $\kappa = 1500 \cdot N$
- 3)横山の図
- 4) 道路橋N値→K値

$$K_H = \frac{\alpha}{0.3} \cdot E_0 \cdot \left(\frac{B_H}{0.3}\right)^{-\frac{3}{4}}$$

ここに

5) 道路橋E₀値→K値 算定式は4) 道路橋N値→K値と同様、α、E₀は以下の通り

 α :地盤反力係数の推定に用いる係数 $\alpha = 4.0$ (常時) $\alpha = 8.0$ (地震時) E_0 :ボーリング孔内で推定した変形係数(入力値)

6)

 $K = 3910 \cdot N^{0.733}$

尚、粘性土でN値がない場合はq_u→N値でK値を算出します。

X:-軸圧縮強度 $q_{\mu} = N/X(N/mm^2)$ の分母の値

N = 2XC

ここに

C:土層の粘着力

 (N/mm^2)

2-8. 矢板変位の計算

矢板変位の計算はセルの計算法で行います。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1137、1161 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成11年4月」P710、816

<u>計算の概要</u>

二重矢板式係船岸をセル式構造物の壁体と仮定して 設計海底面からの距離 h と壁体中心からの距離 e からなる点を壁体の回転位置として回転 角 θ を与えた際の壁体 (矢板)天端での水平変位を算出して許容変位量との照査を行います。

本システムでは、セルの計算は次のように行います。

①壁体に作用する外力の算定(受働側以外)

壁体に作用する受働側を除く荷重の算定を行います。

尚、下記図に記載されている矢板下端高は、矢板の根入れ長の検討で算出された最大根入 れ長による深度を用いています。

水平力	鉛直力
主働土圧(設計海底面以浅)	中詰土
静止土圧(設計海底面以深)	主働側土圧
残留水圧	
動水圧(地震時)	
中詰土地震時慣性力(地震時)	

主働側に作用する土圧について、

設計海底面以浅では主働土圧

設計海底面以深では静止土圧で算定を行います。

静止土圧は次式により算定します。

 $p_a = 0.5 \bigl(\sum \gamma h + w \bigr)$

ここに

 p_a:静止土圧
 (kN/m/m)

 Σγh:設計海底面まで作用する土の単位体積重量×層厚の合計
 (kN/m/m)

 w:上載荷重
 (kN/m/m)

主働側土圧による鉛直力は次式により算定します

 $V_a = S_a \tan \delta$

ここに

V _a :主働側に作用する土圧の鉛直力	(kN/m)
S _a :主働側に作用する土圧(水平力)の合計値	(kN/m)
δ :壁面摩擦角	(度)

中詰土地震時慣性力に用いる設計震度は

設計海底面以浅では、入力値で

設計海底面以深では、設計海底面-10mで設計震度=0.0として直線比例した値を用い、 設計海底面-10m以深では設計震度=0.0となります。

②h, e, θの設定

本システム内部で任意にh, e, θの値を与えます。

③受働側に作用する地盤反力の算定

1. 受働土圧を算出します。

2. ② σ h, e, θ を基に受働側での層上限位置における水平変位 δ を算出します。

3. 2で算出した水平変位を元に各層での地盤反力係数をかけ合わせます。

4. 2 で算出した受働土圧 (=P_p)と地盤反力係数×水平変位 (=K_{ch}δ)とを比較して、小さい 値を受働側に作用する地盤反力になります。

水平変位は海側方向を+として考えます。

水平変位が陸側方向、すなわちーとなった場合には、そのままの値で作用させます。

算出した受働側の荷重を合計した値を水平力として用います。

④受働側に作用する外力の算定

③で計算した地盤反力のうち、塑性域に作用する箇所を、受働側に作用する外力とします。 これは、塑性域で低減した地盤ばねを作用させる事と、塑性域に地盤ばねの上限値(受働 土圧)を作用させる事が計算上、同値となるためです。

この場合、塑性域に作用させた外力は、壁体に作用する外力に含まれます。

受働側土圧による鉛直力は次式により算定します

 $V_p = S_p \tan(-\delta)$

ここに

V _a :受働側に作用する土圧の鉛直力	(kN/m)
S _a :受働側に作用する土圧(水平力)の合計値	(kN/m)
δ :壁面摩擦角	(度)

尚、受働土圧を採用した区間は塑性域

水平地盤反力係数×水平変位を採用した区間は弾性域になります。

この設定は後述するh, e, θの算定で使用します。

⑤壁体に作用する外力の算定

壁体に作用する水平力H、鉛直力V、曲げモーメントMを算定します。

曲げモーメントは

水平力の場合、設計海底面

鉛直力の場合、壁体の中心位置を支点位置として計算します。

尚、曲げモーメントは時計回りを正としています。

⑥h, e, θ**の算**定

壁体に作用する地盤バネ定数を算定します。 鉛直地盤反力の作用分布によって、計算式は以下のようになります。

$$\begin{split} K_{1} &= \sum_{i=1}^{n} K_{Hi}d_{i} + K_{s}A \\ K_{2} &= \sum_{i=1}^{n} \left\{ K_{Hi}d_{i} \left(\sum_{j=1}^{i-1} d_{j} + \frac{d_{i}}{2} \right) \right\} + K_{s}AD \\ K_{3} &= \sum_{i=1}^{n} \left\{ K_{Hi}d_{i} \left(\sum_{j=1}^{i-1} d_{j} + \frac{d_{i}}{2} + \frac{B}{2}\tan\delta_{i} \right) \right\} + K_{s}AD \\ K_{4} &= \begin{cases} \sum_{i=1}^{n} \left\{ K_{Hi}d_{i} \left(\frac{d_{i}^{2}}{3} + \sum_{j=1}^{i-1} d_{j} \sum_{j=1}^{i} d_{j} + \frac{B}{2} \left(\sum_{j=1}^{i-1} d_{j} + \frac{d_{i}}{2} \right) \tan\delta_{i} \right) \right\} + K_{s}AD^{2} + \frac{1}{12}K_{v}A^{3} \qquad (\text{ (fit)}\%) \\ \sum_{i=1}^{n} \left\{ K_{Hi}d_{i} \left(\frac{d_{i}^{2}}{3} + \sum_{j=1}^{i-1} d_{j} \sum_{j=1}^{i} d_{j} + \frac{B}{2} \left(\sum_{j=1}^{i-1} d_{j} + \frac{d_{i}}{2} \right) \tan\delta_{i} \right) \right\} + K_{s}AD^{2} + \frac{1}{6}K_{v}A^{2}(B-e) \quad (\Xi \text{ (fit)}\%) \end{split}$$

ここに

d_i :根入れ部地盤の各層厚 (A)	(11)
$\delta_i:$ 根入れ部地盤の各内部摩擦角 $\begin{cases} -\delta_i & (度地盤反力-受働側) \\ +\delta_i & (度地盤反力-主働側) \end{cases}$	(度)
B:壁体幅(矢板設置幅) (4 K _v :壁体底面における鉛直方向地盤反力定数 (4 K _s :壁体底面における水平方向地盤ばね定数 (4 K _{Hi} :根入れ部地盤の各層の水平方向地盤反力係数(弾性域のみ) (4 A:鉛直地盤反力が正である壁体底面の法線方向単位長さ当たりの面積 (4	(m) (kN / m^3) (kN / m^3) (kN / m^3) (m^2 / m)

Aについて、鉛直地盤反力が台形分布、三角形分布で次のようになります。

台形分布	A = B
三角形分布	A = e + B/2

根入れ部地盤の各層厚は前述の弾性域、塑性域によって層を分割します。

各層の水平方向地盤反力係数は弾性域のみが対象で、塑性域は K_{Hi} = 0.0 として計算しています。

 K_1, K_2, K_3, K_4 によって、h, e, θ は次のように算定されます。

$$\theta = \frac{MK_1 + HK_3}{K_1 K_4 - K_2 K_3}$$

$$h = \frac{MK_2 + HK_4}{MK_1 - HK_3}$$

$$e = \begin{cases} \frac{1}{K_v A} \left\{ \frac{V}{\theta} - h \sum_{i=1}^n K_{Hi} d_i \tan \left| \delta_i \right| + \sum_{i=1}^n K_{Hi} d_i \left(\sum_{j=1}^{i-1} d_j + \frac{d_i}{2} \right) \tan \left| \delta_i \right| \right\} & (\text{``DH'}) \\ \sqrt{\frac{2}{K_v A}} \left\{ \frac{V}{\theta} - h \sum_{i=1}^n K_{Hi} d_i \tan \left| \delta_i \right| + \sum_{i=1}^n K_{Hi} d_i \left(\sum_{j=1}^{i-1} d_j + \frac{d_i}{2} \right) \tan \left| \delta_i \right| \right\} - \frac{B}{2} & (\Xi \text{``DH'}) \end{cases}$$

⑦h, e, θの判定

②で与えたh, e, θと⑤で算出したh, e, θとシステム内で指定した誤差範囲チェックを行い ます。全ての値で特定の誤差範囲内で収まった場合、算出したh, e, θを用います。 全ての値で特定の誤差範囲内に収まらない場合、⑥で算出したh, e, θを②で与えて、全て の値で特定の誤差範囲内に収まるように③~⑥の手順を行います。

⑧矢板天端位置での水平変位の算定

⑦で算出いたh, e, θを基に矢板天端位置の水平変位を算定します。

大堀らの方法は中詰完了時と水平力作用時で、荷重とモデルを分けて曲げモーメントを算 出後、2つのモーメントを足し合わせます。

中詰め完了時では主働土圧+残留水圧が受働土圧と釣り合う位置まで荷重を考慮し、以降 に土層バネを設定した線形モデルとして計算を行います。

水平力作用時は波圧等の外力を考慮し、設計海底面以降に土層バネを設定し、中詰土の剛 性を考慮した非線形モデルとして計算を行います。 一般式

 $y = \frac{m_f}{120EI} x^5 + \frac{m_f H + p_f}{24EI} x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$

地中部塑性域

地盤上部

$$y = \frac{K_p - p_f}{120EI} x^5 + \frac{m_f H + p_f}{24EI} x^4 + b_1 x^3 + b_2 x^2 + b_3 x + b_4$$

地中部弾性域

$$y = e^{\beta x} (Q_1 \cos \beta x + Q_2 \cos \beta x) + e^{-\beta x} (Q_3 \cos \beta x + Q_4 \cos \beta x) \beta = \sqrt[4]{\frac{k_h}{4EI}}$$

 $p_f:$ 中詰土の主働土圧を表す係数 K_p :受働土圧係数

γ:地盤の単位体積重量

一般式

(m) (m)

地上部

地上部

$$y_A + y_B = A_1 \cosh(\lambda x) + A_2 \sinh(\lambda x) + A_3 x + A_4$$

 $-\frac{m_A + m_B}{3BG} (H - x)^3$
 $-\frac{D_{A0} + P_{B0}}{BG} (H - x)^2 + \frac{k\gamma}{G} (H - x)^2$
 $y_A - y_B = e^{\alpha x} (C_1 \cos \alpha x + C_2 \cos \alpha x)$
 $+e^{-\alpha x} (C_3 \cos \alpha x + C_4 \cos \alpha x)$
 $+ \frac{B(m_A - m_B)}{2E_f} (H - x) + \frac{B(p_{A0} - p_{B0})}{2E_f}$
 $\lambda = \sqrt{\frac{BG}{2EI}}$
 $\alpha = \sqrt[4]{\frac{E_f}{2BEI}}$
 $y_A : \xi ka AO x \mathbf{x} \mathbf{z} dagge dagg$

地中部

$$y_{A0} = e^{\beta_A x} (Q_1 \cos \beta_A x + Q_2 \cos \beta_A x) + e^{-\beta_A x} (Q_3 \cos \beta_A x + Q_4 \cos \beta_A x) \beta_A = \sqrt[4]{\frac{k_{hA}}{4EI}} D \ge B \not \supset \supset \bigcirc \supseteq x \ge -B \ddagger \not \subset \lor \ddagger D < B y_{B0} = e^{\beta_B x} (R_1 \cos \beta_B x + R_2 \cos \beta_B x) + e^{-\beta_A x} (R_3 \cos \beta_B x + R_4 \cos \beta_B x) + \frac{2S}{k_{hB}} D \ge B \not \supset \supset -B \ge x \ge -D y_{B0} = e^{\beta_B x} (R_5 \cos \beta_B x + R_6 \cos \beta_B x) + e^{-\beta_A x} (R_7 \cos \beta_B x + R_8 \cos \beta_B x) \beta_B = \sqrt[4]{\frac{k_{hB}}{4EI}}$$

5つの箇所による境界条件は以下のとおりになります。

- 37 -

地盤面	
$y_{A1} = y_{A0} , y_{B1} = y_{B0} y'_{A1} = y'_{A0} , y'_{B1} = y'_{B0} y''_{A1} = y''_{A0} , y''_{B1} = y''_{B0}$	
$G_1 \leq G_0$ の場合	G ₁ >G ₀ の場合
$y_{A1}''' - y_{A0}''' = \frac{B(G_1 - G_0)}{2EI} (y_{A0}' + y_{B0}') + \frac{P_{A0}}{EI}$ $y_{B1}''' - y_{B0}''' = \frac{P_{B0}}{EI}$	$y_{A1}''' - y_{A0}''' = \frac{P_{A0}}{EI}$ $y_{B1}''' - y_{B0}''' = \frac{B(G_1 - G_0)}{2EI} (y_{A0}' + y_{B0}') + \frac{P_{B0}}{EI}$
矢板下端	
$y''_{A0} = 0$, $y''_{B0} = 0$ $y'''_{A0} = 0$, $y'''_{B0} = 0$	

中詰土のせん断弾性係数 Gの一般的な算定式はせん断ひずみ角hetaおよび鉛直応カ σ_{N} の関数で表す

 $G = a \times 2.5 \sigma_N^{0.7} \theta^{-0.5}$

ここに

a:中詰土のせん断弾性係数の補正係数

本システムではa=0.5としています。

算出されたせん断ひずみ角と、その前に計算されたせん断ひずみ角との誤差が許容範囲に 収まるまで繰り返し計算を行います。

参照:「港湾技術研究所報告,二重矢板式構造物の力学特性に関する研究(1984.3)」

2-10. 応力照査

矢板に生じる曲げモーメントはフリーアースサポート法、たわみ曲線法、ロウの方法、大 堀らの方法から算出された曲げモーメントで、各検討条件で最大となる値を選定します。

参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P345 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1104

許容応力度法		信頼性設計法	
$\frac{\sigma}{\sigma_a} \leq 1.0$, $\sigma = \frac{M}{Z}$		$m \frac{S_d}{R_d} \leq 1.0$, $R_d = \gamma_d R_k$, $S_d = \gamma_d R_k$, $S_k = \sigma_d$	$S_{S}S_{k}$ $M = \frac{M}{Z}$
ここに		ここに	
 σ_a:矢板の許容応力度 σ:矢板の応力度 M:矢板に生じる最大曲げモーメント Z:矢板の断面係数 	(N/mm^2) (N/mm^2) $(N \cdot mm)$ (mm^3)	 σ_y:矢板の降伏応力度 σ:矢板の応力度 M:矢板に生じる最大曲げモーメント Z:矢板の断面係数 γ_s:荷重項に乗じる係数 γ_R:抵抗項に乗じる係数 Z:調整係数 	(N/mm ²) (N/mm ²) (N·mm) (mm ³)

2-11. タイ材の検討

参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P524 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1104 タイ材張力はフリーアースサポート法、たわみ曲線法、ロウの方法から算出されたタイ材 取付点位置反力で、各検討条件で最大となる値から次式で算定します。

 $T = A_p L$

ここに

T:タイ材の張力	(<i>kN</i> /本)
A _p :タイ材取付点位置反力	(kN/m)
L:タイ材1本あたりの負担幅	<i>(m</i> /本)

本プログラムでは、タイ材データをシステム内部に保持し、照査式を満足するように断面 の小さいものからトライアル計算を行い、決定します。

タイロッド

許容応力度法		信頼性設計法
$\frac{\sigma}{\sigma_a} \leq 1.0$, $\sigma = \frac{T}{A}$		$m \frac{S_d}{R_d} \leq 1.0$, $R_d = \gamma_d R_k$, $S_d = \gamma_s S_k$ $R_k = \sigma_y$, $S_k = \sigma = \frac{T}{A}$
ここに		ここに
<i>T</i> :タイロッドの張力 <i>A</i> :タイロッドの断面積 <i>σ_a:タイロッドの</i> 許容引張応力度	(N) (mm ²) (N/mm ²)	 σ_y:タイロッドの降伏応力度 (N/mm²) σ:矢板の応力度 (N/mm²) T:タイロッドの張力 (N·mm) A:タイロッドの断面積 (mm²) γ_s:荷重項に乗じる係数 γ_R:抵抗項に乗じる係数 m:調整係数

タイブル・タイケーブル・タイロープ

許容応力度法	信頼性設計法
$\frac{T}{T_a} \leq 1.0$	$m\frac{S_d}{R_d} \leq 1.0 , R_d = \gamma_d R_k , S_d = \gamma_S S_k$ $R_k = T_a , S_k = \sigma = T$
ここに	ここに
T :タイ材張力 (kN) T _a :タイ材許容張力 (kN)	$ \sigma_y : \begin{cases} \beta \ $

※ 部分係数の照査では「降伏点荷重」か、「みなし降伏点荷重(引張荷重(破断荷重× 2/3))」か、を選択する事ができます。2022年以前は「みなし降伏点荷重」が標準で したが、今後は「降伏点荷重」を用いる事が標準となります。

2-12. 腹起こしの検討

本プログラムでは、腹起こし材データをシステム内部に保持し、照査式を満足するように 断面の小さいものからトライアル計算を行い、決定します。

参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P524

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1107

許容応力度法		信頼性設計法
$M_{\max} = \frac{TL}{10}$ $\sigma_a \ge \frac{M_{\max}}{2Z}$ (溝形鋼) $\sigma_a \ge \frac{M_{\max}}{Z}$ (H形鋼)		$\begin{split} m \frac{S_d}{R_d} &\leq 1.0 \\ R_d &= \gamma_d R_k , S_d = \gamma_S S_k \\ R_k &= \sigma_y , S_k = \sigma = \frac{M_{\text{max}}}{2Z} ($ (
ここに		ここに
M_{\max} :腹起こし材に作用する最大曲げモーメント T:タイ材張力 L:タイ材取付点間隔 Z:腹起こし材の断面係数 $\sigma_a:$ 腹起こし材の曲げ応力度	$(kN \cdot m)$ (kN) (m) (m^{3}) (N / mm^{2})	M _{max} :腹起こし材に作用する最大曲げモーメント(kN・m) T:タイ材張力 (kN) L:タイ材取付点間隔 (m) Z:腹起こし材の断面係数 (m³) σ _a :腹起こし材の曲げ応力度 (N/mm²)

矢板と中詰土が一体とした壁体と考えた場合、壁体に作用する外力に対して中詰土による せん断変形に抵抗すると考え、中詰土のせん断抵抗の検討を行います。

この照査は永続状態のみ対象としており、検討箇所は設計海底面および矢板下端に関して、 行います。

本システムでは、矢板下端高は、矢板の根入れ長の検討で算出された最大根入れ長による 深度を用いています。

参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1136、1157 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成11年4月」P707、817

安全率法	信頼性設計法
$F\frac{M_d}{M_r} \leq 1.0$	$m\frac{S_d}{R_d} \leq 1.0 , S_d = \gamma_S S_k , R_d = \gamma_R R_k$ $S_k = M_d , R_k = M_r$
ここに	ここに
M _d :検討面に関する変形モーメント (kN・m/m) M _r :検討面に関する抵抗モーメント (kN・m/m) F:安全率	 <i>M_d</i>:検討面に関する変形モーメント (<i>kN</i>·<i>m</i>/<i>m</i>) <i>M_r</i>:検討面に関する抵抗モーメント (<i>kN</i>·<i>m</i>/<i>m</i>) <i>γ_s</i>:荷重項に乗じる部分係数 <i>γ_R</i>:抵抗項に乗じる部分係数 <i>m</i>:調整係数

<u>変形モーメント</u>

変形モーメントに使用する外力は各検討面で次のようになります。

向、 タル ビーノン しん ミーノ 八値 しゅうに 物口、 糸丘は 自知 し
--

設計海底面

$$M_r = \frac{1}{6} \gamma_0 R_0 H_0^3 \qquad H_0 = \frac{1}{\gamma_0} \sum \gamma_i h_i$$

$$R_0 = v_0^2 (3 - v_0 \cos \phi) \sin \phi$$

$$v_0 = \frac{B}{H_0} \qquad \gamma_0 = \frac{\sum \gamma_i' h_i}{\sum h_i}$$

矢板下端面

地盤と中詰の内部摩擦角にあまり差がない場合や根入れ比が大きく中詰まで崩壊面が至ら ない場合を仮定して、以下の簡略式を用いています。

$$M_{r} = \frac{1}{6} \gamma_{0} R_{0} H_{0}^{3} \left(1 + a \frac{D}{H} \right) \qquad H_{0} = \frac{1}{\gamma_{0}} \sum \gamma_{i} h_{i}$$
$$R_{0} = \frac{2}{3} v_{0}^{2} \left(3 - v_{0} \cos \phi \right) \tan \phi \sin \phi$$
$$v_{0} = \frac{B}{H_{0}} \qquad \gamma_{0} = \frac{\sum \gamma_{i}' h_{i}}{\sum h_{i}}$$

ここに

<i>M_r</i> :検討面での抵抗モーメント	$(kN \cdot m/m)$
γ_0 :中詰土の換算単位体積重量	(kN/m^3)
H ₀ :中詰土の換算単位体積重量を用いた場合の検討面からの換算壁高	<i>(m)</i>
γ_i :検討面より上の中詰土の単位体積重量	(kN/m^3)
γ';:検討面より上の中詰土の単位体積重量(水中)	(kN/m^3)
h _i :検討面より上の中詰土の層厚	(<i>m</i>)
ϕ :検討面より上の中詰土のせん断抵抗角	(度)
B:壁体幅	<i>(m)</i>
H:壁高	<i>(m)</i>
D:根入れ長	<i>(m)</i>
a:補正係数(=1.0)	

- ※ 本システムでは、矢板下端および設計海底面で使用する中詰土の内部摩擦角は中詰土 の最上限層での内部摩擦角を採用しています。
- ※ 本システムでは、矢板下端および設計海底面で使用する中詰土の単位体積重量は検討 面より上の土層での層厚で平均計算を行っています。

2-14. 壁体の滑動

矢板と中詰土が一体とした壁体と考えた場合、滑動に関して性能照査を行います。 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」P1136、928 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成11年4月」P658、817

安全率法	信頼性設計法
$\frac{Q}{H} \ge F$	$m\frac{S_d}{R_d} \leq 1.0 , S_d = \gamma_S S_k , R_d = \gamma_R R_k$ $S_k = H , R_k = Q$
ここに	ここに
H:水平力 (kN/m) Q:せん断抵抗力 (kN/m) F:安全率	H:水平力 (kN/m) Q:せん断抵抗力 (kN/m) γ _s :荷重項に乗じる部分係数 γ _R :抵抗項に乗じる部分係数 m:調整係数

せん断抵抗力は次式により計算します。

 $Q = \begin{cases} V \tan \phi & (支持地盤:砂質土) \\ cB & (支持地盤:粘性土) \end{cases}$

ここに

V:鉛直力	(kN/m)
♦:土層接地面での内部摩擦角	(度)
c:土層接地面での粘着力	(kN/m)
B:矢板設置幅	<i>(m)</i>

使用する外力は次のようになります。

	設計海底面	矢板下端
	中 ま ● ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Piāt±重量 → → → → → → → → → → → → → → → → → → →
水	主働土圧	主働土圧
平	残留水圧	受働土圧
カ	地震時慣性力(地震時)	残留水圧
	動水圧(地震時)	地震時慣性力(地震時)
		動水圧(地震時)
鉛	主働土圧	主働土圧
直	中詰土重量	受働土圧
カ		中詰土重量

既に港湾の施設の技術上の基準・同解説では、H19年版より構造物の照査方法が、許容応力 度法によるものから材料係数アプローチによるレベル1信頼性設計法に基づく方法(以下、 部分係数法)に変更となっています。

H30年版では、部分係数の考え方が荷重抵抗係数アプローチに変更になりました。一般に部 分係数が作用していない値を特性値と呼び、部分係数が作用した値を設計用値と呼びます。 参照:「日本港湾協会,港湾の施設の技術上の基準・同解説 平成30年5月」

P1071、1099、1104~1107、1154

フリーアースサポート法・ロウの方法による矢板の根入れ長に用いる部分係数

四초남성 그 묘변라		抵抗項に乗じる	荷重項に乗じる	調整係数
照宜刈家	工眉倆成	部分係数	部分係数	m
	砂質土地盤	0. 72	1.09	_
♪ 永続状態	粘性土が 含まれる場合	0. 77	1.11	(1.00)
レベル1地震動に対する	全ての	-	-	1 20
変動状態	土層構成	(1.00)	(1.00)	1.20

フリーアースサポート法・ロウの方法による矢板壁の応力に用いる部分係数

四大社会	抵抗項に乗じる	荷重項に乗じる	調整係数
照直刈家	部分係数	部分係数	m
永続状態	0. 84	1. 18	- (1.00)
レベル1地震動に対する変動状態	- (1.00)	- (1.00)	1.12

タイ材の応力照査に用いる部分係数

昭太社会	抵抗項に乗じる	荷重項に乗じる	調整係数
照直刈家	部分係数	部分係数	m
永続状態	0. 64	1. 29	- (1.00)
レベル1地震動に対する変動状態	- (1.00)	- (1.00)	1. 67

腹起こし材の応力照査に用いる部分係数

四大计会	抵抗項に乗じる	荷重項に乗じる	調整係数
照直对象	部分係数	部分係数	m
永続状態	-	-	1,67
	(1.00)	(1.00)	
しべし1地雲動に対する変動状能	-	-	1 1 2
レンルー地展動に対する変動状態	(1.00)	(1.00)	1.12

壁体のせん断抵抗の照査に用いる部分係数

抵抗項に乗じる	荷重項に乗じる	調整係数
部分係数	部分係数	m
- (1.00)	- (1.00)	1. 20

壁体の滑動の性能照査に用いる部分係数

昭大社会	抵抗項に乗じる	荷重項に乗じる	調整係数
照直刘家	部分係数	部分係数	m
永続状態	0. 87	1.06	- (1.00)
レベル1地震動に対する変動状態	- (1.00)	- (1.00)	1.00

過去の設計法における設定に基づく方法(形式的な部分係数法)の部分係数の例 基準書には、たわみ曲線法の照査に用いる部分係数は示されていません。そのため、「過 去の経験に基づく方法」(過去の適用事例が多く、十分に実績のある、従来から利用され てきた安全率法や許容応力度法)に準ずるものとして、全ての部分係数を便宜上1.0とした 上で、調整係数を用いて照査することを前提として初期値を設定しています。

たわみ曲線法による矢板の根入れ長に用いる部分係数

四大六角	抵抗項に乗じる	荷重項に乗じる	調整係数
照宜对家	部分係数	部分係数	m
ふ結け能	-	-	1 20
	(1.00)	(1.00)	1.20
レベル1地雲動に対する亦動比能	_	_	1 20
レベルー地展動に対する変動状態	(1.00)	(1.00)	1.20

たわみ曲線法による矢板壁の応力に用いる部分係数

四大社会	抵抗項に乗じる	荷重項に乗じる	調整係数
照直刈家	部分係数	部分係数	m
永続状態	_	_	1 67
	(1.00)	(1.00)	1.07
しべり1世雲動に対する亦動比能	-	-	1 10
レンルー地展動に対する変動状態	(1.00)	(1.00)	1.12

<u>3. 補足資料</u>

<u> 3 - 1.参考文献</u>

準拠基準及び参考文献は以下の通りです。

•	港湾の施設の技術上の基準・同解説	平成30年 5月 日本港湾協会
		平成19年 7月 日本港湾協会
		平成11年 4月 日本港湾協会
		平成 元年 6月 日本港湾協会
•	漁港・漁場の施設の設計の手引き	2003年度版 全国漁港協会
•	道路橋示方書・同解説 Ⅳ下部構造編	平成24年 3月 日本道路協会
•	鋼管杭—その設計と施工—	2009年度版 鋼管杭・鋼矢板技術協会
•	鋼矢板―設計から施工まで―	2014年度版 鋼管杭・鋼矢板技術協会
•	杭軸直角方向地盤反力係数の推定方法に関する一提案	第41回地盤工学研究発表会