港湾設計シリーズ

# 棚式係船岸5

Ver 2.X.X

# 操作説明書

✓ 「「「「「「「」」」」」」」

〒730-0833 広島市中区江波本町4-22 Tel (082)293-1231 Fax (082)292-0752 URL https://www.aec-soft.co.jp Mail:support@aec-soft.co.jp

# マニュアルの表記

システム名称について

 本システムの正式名称は「棚式係船岸5 Ver2.X.X」ですが、本書内では便宜上「棚式 係船岸5」と表記している場合があります。

メニューコマンドについて

- 「棚式係船岸5」ではドロップダウンメニューの他、一部機能についてはスピードボタンが使用できますが、本書ではドロップダウンメニューのコマンド体系で解説しています。その際、アクセスキー(ファイル(F)の(F)の部分)は省略しています。
- メニュー名は[]で囲んで表記してあります。コマンドに階層がある場合は[ファイル]-[開く]のようにコマンド名を「-」で結んでいます。この例では、最初に[ファイル]を選択して、次は[開く]を選択する操作を示しています。

画面について

- ・ 画面図は、使用するディスプレイの解像度によっては本書の画面表示と大きさなどが異なる場合があります。
- 「棚式係船岸5」は、画面の解像度が 960×720ドット以上で色数が256色以上を想定しています。また、画面のフォントは小さいサイズを選択して下さい。大きいフォントでは画面が正しく表示されない場合があります。

# 一目 次一

| 1. お  | いになる前に                                                | 1                       |
|-------|-------------------------------------------------------|-------------------------|
| 1 —   | はじめに                                                  | 1                       |
| 1 —   | その他                                                   | 1                       |
|       |                                                       |                         |
| 2.棚   | 系船岸5のセットアップ                                           | 2                       |
| 2 —   | 棚式係船岸5のインストール                                         | 2                       |
| 2 —   | ユーザー登録                                                | 2                       |
| 2 —   | 棚式係船岸5のアンインストール                                       | 3                       |
|       |                                                       |                         |
| 3. 検  | 処理を始める前に                                              | 4                       |
| 3 —   | 基本画面の説明                                               | 4                       |
| з —   | 装備している機能の一覧                                           | 5                       |
| 3 —   | 処理の流れ                                                 | 6                       |
| 3 —   | データの作成/保存                                             | 8                       |
| 3 —   | よくあるご質問                                               | 9                       |
| 3 —   | ライセンス認証ユーザーページ                                        | . 10                    |
| 3 —   | 更新履歴の確認                                               | . 11                    |
| 3 —   | 最新バージョンのチェックを行う                                       | . 12                    |
| 3 —   | 起動時に最新バージョンの自動チェックを行う                                 | . 13                    |
|       |                                                       |                         |
| 4. デー | 入力・修正                                                 | . 14                    |
| 4 —   | 基本条件                                                  | 14                      |
| •     | 1タブ (条件その1)                                           | 14                      |
|       | クタブ(条件その2)                                            | 17                      |
|       | - / / (*********************************              | 18                      |
|       | 3 タブ (印力体数/                                           | 19                      |
| 4 —   |                                                       | 20                      |
| -     | - ロガネロ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 20                      |
|       | 「 ノ ノ ( 前 岡 八 仮 / ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | . 20                    |
|       | 2 / / (工具/                                            | 25                      |
|       | 0 アフ (日地展動) 地展時/                                      | . 20<br>33              |
| 4 —   | ーノン(10.17) · · · · · · · · · · · · · · · · · · ·      | . 00                    |
| -     | ▲町▲                                                   | 36                      |
|       | / 庄保の八月 - 削除 - 修正 と 1                                 | 36                      |
|       | / 線力の追加を行う                                            | . 00                    |
|       | / 禄刀の削がと口 /                                           | . 07                    |
|       | / ブロックの显跡を行う                                          | 38                      |
|       | / フロックの別际を11 /                                        | . 00<br>. 20            |
|       | / ブロック面与の役切と门 ブー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | . 00<br>. 20            |
|       | / フロクノの豆球内谷と友史タる                                      | . 30                    |
|       | / 快的点で豆球 / る                                          | . 00<br>20              |
|       | / 侯司点で刑际 / る                                          | . 00<br>20              |
|       | / 快的点の豆球的谷を変更,る                                       | . 00                    |
|       | /                                                     | . 40                    |
|       | / エエロロホモ以近/ 府际 / つ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | . <del>4</del> 1<br>/11 |
|       | / 画画のカル八と1〕ノ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | . + i<br>/10            |
|       | / 回回の帽小で1)ノ                                           | .42<br>10               |
|       | / 四四ツエ仲孜小で1)ノ                                         | . 42<br>10              |
| л     | / ノロフノ刀討士広                                            | .42<br>10               |
| 4 —   | 別回大110                                                | . 4ა<br>"კე             |
|       | ■アノ (大似木什/                                            | .43<br>15               |
|       | ムラノ (大似江思旧化)                                          | . 40                    |

| 第2タブ(鋼管矢板指定)                                            | <br>    | 47  |
|---------------------------------------------------------|---------|-----|
| 4-5. タイ材                                                | <br>    | 48  |
| 第1タブ(タイ材)                                               | <br>    | 48  |
| 第2タブ(腹起こし材)                                             | <br>    | 50  |
| 4-6 杭寸法                                                 |         | 52  |
| 第1971年1月1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日            | <br>    | 52  |
| 第一次 (M ) (A)                                            | <br>    | 55  |
| 第277 (気) (力)                                            | <br>    | 58  |
| 第577(10頭印)                                              | <br>    | 61  |
| 4 - 7.                                                  | <br>    | 62  |
| 4-8. 工員宋件                                               | <br>    | 03  |
| 第1タノ(王慟)                                                | <br>    | 63  |
| 第2タフ(受働)                                                | <br>    | 6/  |
| 第3タフ(棚杭計算用)                                             | <br>    | 69  |
| 4-9.任意土庄                                                | <br>    | 72  |
| 第1~第2タブ(矢板の検討/杭の検討)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | <br>    | 72  |
| 4-10. 他外力                                               | <br>    | 74  |
| 4-11. 限界状態                                              | <br>    | 76  |
| 4-12. 模式図                                               | <br>    | 77  |
|                                                         |         |     |
| 5. 設計計算·報告書作成                                           | <br>    | 78  |
| 5-1 注音すべきメッセージ                                          | <br>    | 79  |
| 5-2 エラーメッセージ                                            | <br>    | 84  |
|                                                         | <br>    | 04  |
|                                                         | 1       | 101 |
| 6. 帳票印刷                                                 | <br>I   |     |
| 6-1. 基本画面の説明                                            | <br>I   |     |
| 6-2. WORD/EXCEL文書にコンバート                                 | <br>1   | 102 |
| 6-3. 帳票出力結果について                                         | <br>1   | 103 |
| 入力データチェックリスト                                            | <br>1   | 103 |
| 計算結果                                                    | <br>1   | 103 |
| トライアル結果                                                 | <br>1   | 103 |
| 設計条件                                                    | <br>1   | 103 |
| 矢板の設計                                                   | <br>1   | 104 |
| タイ材の検討                                                  | <br>1   | 104 |
| 腹起こしの検討                                                 | <br>1   | 104 |
| 外力及び棚重量の計算                                              | 1       | 104 |
| 村反力の質定                                                  | <br>1   | 104 |
| 杭久力の弁定                                                  | <br>1 1 | 105 |
| 11.12.700 後日                                            | <br>1   | 105 |
| スif7.001次ii)                                            | <br>I   | 105 |
| 貝の同面摩捺の快討                                               | <br>1   | 105 |
| 机とノーナングの結合計算                                            | <br>    | 105 |
|                                                         |         |     |
| 7. 計算概要の説明                                              | <br>1   | 106 |
| 7 – 1. 矢板の設計                                            | <br>1   | 107 |
| フリーアースサポート法                                             | <br>1   | 108 |
| たわみ曲線法                                                  | <br>1   | 111 |
| ロウの方法                                                   | <br>1   | 113 |
| 矢板の応力度                                                  | <br>1   | 114 |
| タイ材の検討                                                  | <br>1   | 114 |
| 腹起こしの検討                                                 | <br>1   | 114 |
| 7-2 杭の設計                                                | <br>1   | 115 |
| 外力及び御軍量の計算                                              | <br>1 1 | 115 |
|                                                         | <br>1   | 117 |
| <b>以心凹た示山</b>                                           | <br>    | 117 |
| 本估注 (無阻)                                                | - 1     | 110 |

# 一目 次一

| 変位法(有限長)     |  |
|--------------|--|
| 杭応力の検討       |  |
| 根入れ長の算出      |  |
| 支持力の検討       |  |
| 負の周面摩擦の検討    |  |
| 杭とフーチングの結合計算 |  |

# 1. お使いになる前に

## 1-1. はじめに

この操作説明書では、「棚式係船岸5」のインストールから起動までのセットアップ方法、 及びプログラムの基本操作について記述してあります。動作環境・計算の考え方・計算容 量・仕様につきましては「商品概説書」をご覧下さい。

# <u>1-2. その他</u>

「使用許諾契約書」は、本システムインストール先フォルダ内にある「使用許諾契約書.PDF」を見ることにより、いつでも参照できます。

# 2. 棚式係船岸5のセットアップ

### 2-1. 棚式係船岸5のインストール

- (1) Windowsを起動します。
- (2) 「製品情報&ダウンロード」(http://www.aec-soft.co.jp/public/seihin.htm)
   にて、ご希望のソフトウェア名をクリックします。
- (3) 「最新版ダウンロード・更新履歴」をクリックします。
- (4) 「最新版ダウンロードはこちら」をクリックして、ダウンロードします。
- (5) ダウンロードしたSETUP. EXEを実行し、インストールを実行します。

インストール作業は管理者権限のあるユーザーでログインしてからセットアップして下 さい。

#### 2-2. ユーザー登録

「棚式係船岸5」をご利用頂くためには、ユーザー登録を行う必要があります。以降にその手順を示します。

- ※ 事前に弊社からお知らせしている製品のシリアルNoと、仮ユーザーID・仮パスワード (変更済であれば、変更後のユーザーID・パスワード)をご用意下さい。
- (1) [スタート] [AEC アプリケーション] [棚式係船岸5] をクリックし「棚式係船岸 5」を起動します。インストール直後に起動した場合、データ入力等のメニューは使用 不可の状態です。
- (2) [ヘルプ]-[バージョン情報]をクリックします。

| 棚式係船岸5のパージョン情報                                     |                                                                                                               |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                    | 棚式係船岸5                                                                                                        |  |  |  |
| ハギーシギョン (                                          | 2.1.2                                                                                                         |  |  |  |
| シリアルNo [                                           | ]                                                                                                             |  |  |  |
| TEL:<br>FAX:<br>E-Mail:<br>URL:<br>(C)1998-2025 (≹ | 082-293-1231<br>082-292-0752<br>support@aec-soft.co.jp<br><u>https://www.aec-soft.co.jp/</u><br>朱)アライズソリューション |  |  |  |
| ב-#°- <u>ז</u>                                     | 登録 OK                                                                                                         |  |  |  |

(3) [ユーザー登録]ボタンをクリックします。

| <sup>ユーザ登録</sup><br>ユーザー登録画面    |                                         |  |  |  |
|---------------------------------|-----------------------------------------|--|--|--|
| シリアル№ <u>SUBSXXXX</u>           | 000X                                    |  |  |  |
| - 認証方法<br>〇 評価版<br>〇 インターネット 認証 | 認証情報<br>利用者名<br>ユーザーID<br>パスワード<br>識別番号 |  |  |  |
| 認証回避<br>「認証回避」はスタンダードプラン        | 登録 キャンセル ひみ有効です                         |  |  |  |

- (4) お知らせしている製品のシリアルNo(半角英数12文字)を入力します。
- (5) 認証情報入力部分が入力可能となりますので、次の項目を入力して下さい。 利用者名:利用者を識別するための任意の名称です。ライセンス認証ユーザーペ ージに表示され、現在使用中であることがわかります。
  - ユーザーID:アプリケーションを動作させるためのユーザーIDを入力します。不明な 場合には、弊社アプリケーションを管理している御社管理者に問い合 わせて確認して下さい。
  - パスワード:アプリケーションを動作させるためのパスワードを入力します。不明な 場合には、弊社アプリケーションを管理している御社管理者に問い合 わせて確認して下さい。

以上が入力し終えたら [登録] ボタンをクリックします。入力に間違いがあればエラ 一表示されます。

(6) [バージョン情報] に戻りますので [OK] ボタンでメニューに戻ります。使用不可だ ったメニューが使用可能の状態になります。

# 2-3. 棚式係船岸5のアンインストール

- (1) Windowsを起動します。
- (2) [スタート]-[Windowsシステムツール]-[コントロールパネル]より[アプリケーションの追加と削除]を起動して下さい。ご使用の環境によっては[プログラムの追加/削除]となっている場合があります。
- (3) インストールされているプログラムの一覧表が表示されますので、「棚式係船岸5」 を選択して下さい。
- (4) 「棚式係船岸5」の下に[変更と削除]ボタンが表示されますので、このボタンを選択 して下さい。自動的にアンインストールプログラムが起動します。
- (5) アンインストールプログラムの指示に従ってアンインストールを実行して下さい。
- (6) 主なプログラムファイルは自動的に削除されますが、一部のファイルが削除されずに残っている場合があります。そのままでも問題ありませんが、完全に削除したい場合には以下の手順で削除することができます。
- ※ 管理者権限のあるユーザーでログインして下さい。
- ※ エクスプローラで、[C:¥AEC アプリケーション]の下にある[棚式係船岸5]フォルダ を削除して下さい。

# 3-1. 基本画面の説明

システムを起動すると下のような画面が表示されます。起動時には「新規データ」を読み込むようになっています。各設計条件は、メニューより選択するか、対応するボタンをクリックすることでタブ画面が切り替わりますのでそこに入力します。

| 📊 棚式係船           | 译5 Ver2.1.2 - | 無題             |                |                 |
|------------------|---------------|----------------|----------------|-----------------|
| ファイル( <u>F</u> ) | データ入力(!)      | 設定( <u>E</u> ) | 計算( <u>C</u> ) | ヘルプ( <u>H</u> ) |
| 🗅 🗁 🔛            | 🧕 🚑 🛛 🤋       |                |                |                 |

## 【メニュー構成】

- 〔 ファイル(F) 〕データファイルの作成/保存、帳票印刷を行います。
- 〔 データ入力(I)〕検討に必要な各種条件データの入力画面を切り替えます。
- 〔 設定(E) 〕 任意矢板データの入力画面を表示します。
- 〔 計算(C) 〕 計算処理を実行し、報告書を作成します。
- 〔 ヘルプ(H) 〕 システムのヘルプ・更新、バージョン情報を表示します。

ファイル 新しくデータを用意します 既存のデータファイルを読み込みます └新規 -開く 元のデータファイルに上書き保存します -上書き保存 新しく名前を付けて保存します -名前を付けて保存 計算結果を印刷します -帳票印刷 ├最近使ったファイル履歴 最近使ったデータを最大4件表示します プログラムを終了します 終了 データ入力 設計検討の基本となるデータを設定します 計算条件に関する諸元を設定します 上部工に関するデータを設定します 前面矢板に関するデータを設定します ├基本条件 -計算条件 -上部工 -前面矢板 タイ材に関するデータを設定します 杭条件に関するデータを設定します -タイ材 杭条件 机保住に関するデータを設定します 鋼材の腐食に関するデータを設定します 土層に関するデータを設定します 任意土圧に関するデータを設定します -腐食 -土質条件 任意土圧 他外力 その他の外力を設定します 限界状態 限界状態における諸条件を設定します └模式図 条件から作成した模式図を表示します ·設定 └任意矢板の追加 └任意腹起こし材の追加 任意の鋼矢板を追加します 任意の腹起こし材を追加します 計算 設計計算を実行します 実行 結果表示 計算結果を画面に表示します ヘルプ ├操作説明 操作説明書を表示します 商品概説書を表示します -商品概説 -よくあるご質問 HPよりFAQを表示します -バージョン情報 バージョン番号/シリアル番号を表示します ライセンス認証ユーザーページへ遷移します -ライセンス認証ユーザーページ 更新履歴を表示します −更新履歴の確認 -最新バージョンの確認 -起動時に最新バージョンをチェック 最新Verの確認を行います 起動時に最新Verを確認するか指定します

「棚式係船岸5」は、一般的には以下のように作業の流れで計算を行います。各工程での 作業は、次章以降に詳説してあります。また、データを修正する場合には任意の箇所に戻 ってその箇所以降の作業をやり直しても構いません。

このフローチャートは一般的な作業の流れであって、必ずしもこの順番どおりでなけれ ば計算できないというわけではありません。





<u>3-4.データの作成/保存</u>

| 📊 棚式係船岸5 Ver1.0.0 - 無題    |       |        |  |  |  |
|---------------------------|-------|--------|--|--|--|
| ファイル(F) データ入力(I) 設定(E) 画面 |       |        |  |  |  |
| 新規                        | 作成(N) | Ctrl+C |  |  |  |
| 聞く                        | O)    | Ctrl+O |  |  |  |
| 上書き保存(S)                  |       | Ctrl+S |  |  |  |
| 名前を付けて保存(A)               |       |        |  |  |  |
| 印刷(P)                     |       |        |  |  |  |
| 終了                        | (X)   |        |  |  |  |

【新規(N)】 新規データを作成します。ファイル名は「無題」となります。

【開く(0)】 既存のデータを開きます。下図の「ファイルを開く」ダイアロ グボックスが表示されますので、対象ファイルを選択し「開く」 ボタンをクリックします。以前のバージョンのファイルを読み 込む場合は、ファイルの種類を変更します。

| 🏢 開く                                                                   |                            |                  |                                   | ×          |
|------------------------------------------------------------------------|----------------------------|------------------|-----------------------------------|------------|
| $\leftarrow \rightarrow \checkmark \uparrow \blacksquare \checkmark A$ | AEC アブリケーション » 棚式係船岸5 » DA | ර v AT           | ○ DATAの検索                         |            |
| 整理 ▼ 新しいフォルダ                                                           | -                          |                  | == -                              | · 🔳 🕐      |
| > 📌 ዕイック アクセス                                                          | ~<br>名前                    | 更新日時             | 種類                                | サイズ        |
| > 📃 デスクトップ                                                             | 🥮 サンプルデータ_H30.tn5          | 2019/06/19 10:06 | TN5 ファイル                          | 23 KB      |
|                                                                        |                            |                  |                                   |            |
| 771                                                                    | 「ル名( <u>N</u> ):           | ~                | 棚式係船岸 5 (*.tn5)<br>開く( <u>O</u> ) | ~<br>キャンセル |

【上書き保存(S)】

現在編集中のデータを保存します。

【名前を付けて保存(A)】 新規作成したデータを初めて保存する場合に使用します。下 図の「ファイル名を付けて保存」ダイアログボックスが表示さ れますので、ファイル名を入力し「保存」ボタンをクリックし ます。

| 📊 名前を付けて保存                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×       |
|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ← → 、 ↑      ▲ « AEC 77 リケー | ジョン » 棚式係船岸5 » DATA | ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓      ✓     ✓      ✓      ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓ | 索       |
| 整理 ▼ 新しいフォルダー               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ::: - ? |
| > 📌 クイック アクセス               | 名前 ^                | 更新日時 種类                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 見 サイス   |
| > 二 デスクトップ                  | /── サンプルデータ_H30.tn5 | 2019/06/19 10:06 TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 ファイル  |
|                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|                             | <                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >       |
| ファイル名(N): サンプルデータト          | 130.tn5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~       |
| ファイルの種類(1): 棚式係船岸 5         | (*.tn5)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~       |
| ▲ フォルダーの非表示                 |                     | 保存( <u>S</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | キャンセル   |

# <u>3-5.よくあるご質問</u>

インターネットに接続されている環境であれば、次のメニューを選択することにより、最 新バージョンのチェックを行うことができるようになっています。「ヘルプ」--「よくあ るご質問(Q)」を選択して下さい。

| ヘルプ(H)              |
|---------------------|
| 操作説明(M)             |
| 商品概説(N)             |
| よくあるご質問(Q)          |
| バージョン情報(A)          |
| ライセンス認証ユーザーページ(W)   |
| 更新履歴の確認(R)          |
| 最新バージョンの確認(U)       |
| 起動時に最新バージョンをチェック(V) |

Webブラウザを起動し、よくあるご質問(FAQ)が表示されます。

| ☆♪ 翻アライズソリューション | HOME | 製品情報 | サポート | お問合せ | 会社概要 | おためし |
|-----------------|------|------|------|------|------|------|
| よくあるご質問(FAQ)    |      |      |      |      |      |      |
| 棚式係船岸5          |      |      |      |      |      |      |

# 3-6. ライセンス認証ユーザーページ

Webブラウザを介してライセンス認証ユーザーページに遷移します。ユーザー情報の変更 やライセンス情報の確認、現在利用中ユーザーの確認等が行えます。「ヘルプ」-「ライ センス認証ユーザーページ(W)」を選択してください。

| ヘルプ(H)              |
|---------------------|
| 操作説明(M)             |
| 商品概説(N)             |
| よくあるご質問(Q)          |
| パージョン情報(A)          |
| ライセンス認証ユーザーページ(W)   |
| 更新履歴の確認(R)          |
| 最新バージョンの確認(U)       |
| 起動時に最新バージョンをチェック(V) |

ライセンス超過の際、ライセンスを確保している利用者の情報を知ることができます。 詳しくはライセンス認証ユーザーページ説明書をご覧下さい。

| AEC-LICENSE | インターネットによるライセンス認証ユーザーページ                                                                                                                                                  | * |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| お知らせ        | USB鍵を必要としないライセンス認証システムです。ユーザーページには以下の機能があります。<br>・ ユーザー情報の変更<br>・ ユーザーTD・パスワードの変更<br>・ ライセンス情報の確認<br>・ 現在利用中ユーザーの確認<br>・ お問い合わせフォーム<br>デライセンス認証ユーザーページ説明書<br>ユーザーページへロガイン |   |
|             | <b>ユーザーID</b><br>パスワード<br>ログイン<br>※ブラウザのCookie機能は必ず有効にしてください。                                                                                                             | • |

# <u>3-7.更新履歴の確認</u>

インターネットに接続されている環境であれば、次のメニューを選択することにより、最 新バージョンのチェックを行うことができるようになっています。「ヘルプ」-「更新履 歴の確認(R)」を選択して下さい。

| ヘJレノ(H)             |
|---------------------|
| 操作説明(M)             |
| 商品概説(N)             |
| よくあるご質問(Q)          |
| パージョン情報(A)          |
| ライセンス認証ユーザーページ(W)   |
| 更新履歴の確認(R)          |
| 最新バージョンの確認(U)       |
| 起動時に最新バージョンをチェック(V) |

Webブラウザを起動し、更新履歴及び最新版ダウンロードリンクが表示されます。

| ☆♪ 翻アライズソリューション | HOME 製品情報 | き サポート | お問合せ  | 会社概要     | おためし |   |  |  |  |  |  |  |
|-----------------|-----------|--------|-------|----------|------|---|--|--|--|--|--|--|
|                 |           |        |       |          |      | h |  |  |  |  |  |  |
| / 棚式係船岸5        |           |        |       |          |      |   |  |  |  |  |  |  |
| 最新版ダウンロードはこちら   |           |        |       |          |      |   |  |  |  |  |  |  |
|                 |           | [      | 1 動作環 | 境 (OS) に | ついて  |   |  |  |  |  |  |  |

# 3-8. 最新バージョンのチェックを行う

インターネットに接続されている環境であれば、次のメニューを選択することにより、最 新バージョンのチェックを行うことができるようになっています。「ヘルプ」-「最新バ ージョンの確認(U)」を選択して下さい。

| 11 | (H)                 |
|----|---------------------|
|    | 操作説明(M)             |
|    | 商品概説(N)             |
|    | よくあるご質問(Q)          |
|    | バージョン情報(A)          |
|    | ライセンス認証ユーザーページ(W)   |
|    | 更新履歴の確認(R)          |
|    | 最新バージョンの確認(U)       |
|    | 起動時に最新バージョンをチェック(V) |

リビジョンアップ/バージョンアップの有無を確認し、更新履歴を確認するダイアログ が表示されます。「自動更新」はセットアッププログラムのダウンロード〜実行/更新ま でを自動的に行います。「手動更新」はWebブラウザを起動し、セットアッププログラム のダウンロードサイトに遷移します。ダウンロード〜実行/更新までを手動で行って下 さい。正常終了すれば、更新されたプログラムが自動的に起動します。

| 足利口        | Version | 製品に関するお知らせ                     | 更新  |
|------------|---------|--------------------------------|-----|
| 0XX/YY/ZZ  | 1.0.6   | 更新履歴内容その7                      | 未更新 |
| 0XX/YY/ZZ  | 1.0.5   | 更新履歴内容その6                      | 更新済 |
| 0XX/YY/ZZ  | 1.0.4   | 更新履歴内容その5                      | 更新済 |
| 0XX/YY/ZZ  | 1.0.3   | 更新履歴内容その4                      | 更新済 |
| 0XX/YY/ZZ  | 1.0.2   | 更新履歴内容その3                      | 更新済 |
| 0XX/YY/ZZ  | 1.0.1   | 更新履歴内容その2                      | 更新済 |
| 0XX/YY/ZZ  | 1.0.0   | 更新履歴内容その1                      | 更新済 |
|            |         |                                |     |
| 更新日        |         | アライズソリューションからのお知らせ             |     |
| 2020/04/27 | 新型コロナウ  | カイルス感染症拡大による当社製品サポート体制変更のお知らせ。 |     |
| 2020/01/06 | FAQをリニュ | ーアルいたしました。                     |     |
| 2019/05/09 | 新製品『係   | 留枕設計計算ルを発売いたしました。              |     |
| 2019/05/09 | 新製品『二   | 重矢板式防波堤Iを発売いたしました。             |     |
|            |         |                                |     |
|            |         |                                |     |
|            |         |                                |     |
|            |         |                                |     |

# 3-9. 起動時に最新バージョンの自動チェックを行う

インターネットに接続されている環境であれば、プログラム起動時にインターネットを 経由して最新バージョンのチェックを行うことができるようになっています。「ヘルプ」 - 「起動時に最新バージョンをチェック(V)」にチェックをつけて下さい。次回起動時か ら有効となります。

| ヘルプ(H) |                   |
|--------|-------------------|
| 操作調    | 说明(M)             |
| 商品構    | 既説(N)             |
| よくある   | るご質問(Q)           |
| バージ    | ョン情報(A)           |
| ライセ    | ンス認証ユーザーページ(W)    |
| 更新解    | 履歴の確認(R)          |
| 最新/    | (ージョンの確認(U)       |
| 起動問    | 寺に最新バージョンをチェック(V) |

チェック機能を有効とした場合、未更新プログラムの有無に関わらず更新履歴を確認す るダイアログを表示します。チェックが無い場合は未更新のプログラムがある場合に限 り「お知らせダイアログ」を表示します。「自動更新」はセットアッププログラムのダウ ンロード〜実行/更新までを自動的に行います。「手動更新」はWebブラウザを起動し、 セットアッププログラムのダウンロードサイトに遷移します。ダウンロード〜実行/更 新の処理を手動で行ってください。正常終了すれば、更新されたプログラムが自動的に起 動します。

|                   | XXXXXXXX 1  | .X.Xのお知らせ  |                |             |           | × |
|-------------------|-------------|------------|----------------|-------------|-----------|---|
| 更新日               | Version     |            | 製品に関す          | するお知らせ      | 更新        |   |
| 20XX/YY/ZZ        | 1.0.6       | 更新履歴内容そ    | Ø7             |             | 未更新       |   |
| 20XX/YY/ZZ        | 1.0.5       | 更新履歴内容そ    | Ø6             |             | 更新済       |   |
| 20XX/YY/ZZ        | 1.0.4       | 更新履歴内容そ    | Ø5             |             | 更新済       |   |
| 20XX/YY/ZZ        | 1.0.3       | 更新履歴内容そ    | Ø4             |             | 更新済       |   |
| 20XX/YY/ZZ        | 1.0.2       | 更新履歴内容そ    | <i>0</i> 3     |             | 更新済       |   |
| 20XX/YY/ZZ        | 1.0.1       | 更新履歴内容そ    | Ø2             |             | 更新済       |   |
| 20XX/YY/ZZ        | 1.0.0       | 更新履歴内容そ    | Ø1             |             | 更新済       |   |
|                   |             |            |                |             |           | _ |
| 更新日               |             |            | アライズソリュー       | ・ションからのお知らせ |           |   |
| 2020/04/27        | 新型コロナウ      | フイルス感染症拡大  | たによる当社製品サポート体制 | 変更のお知らせ。    |           |   |
| 2020/01/06        | FAQをリニュ     | ーアルいたしました。 | ,              |             |           |   |
| 2019/05/09        | 新製品『係       | 留杭設計計算』を   | 発売いたしました。      |             |           |   |
| 2019/05/09        | 新製品に        | 重矢板式防波堤。   | を発売いたしました。     |             |           |   |
|                   |             |            |                |             |           |   |
|                   |             |            |                |             |           |   |
|                   |             |            |                |             |           |   |
|                   | 21-21       |            |                |             |           |   |
| https://www.aec-s | soft.co.jp/ |            | 自動更新           | 手動更新        | 開じる [Esc] |   |

## 4-1. 基本条件

基本条件(業務名称、設計基準、高さ条件、部分係数など)を指定します。基本条件の設 定画面は、設計基準が港湾基準(H30)の場合は3タブ(条件その1、条件その2、部分係数)の構 成、それ以外の場合は3タブ(条件その1、条件その2、安全率)の構成となります。

## <u>第1タブ(条件その1)</u>

| 📊 棚式係船岸5 Ver2.1.2 - サンプルデータ_H30港湾     | 基準              |            |        |           |                       |          | _                     |    | ×   |
|---------------------------------------|-----------------|------------|--------|-----------|-----------------------|----------|-----------------------|----|-----|
| ファイル(E) データ入力(!) 設定(E) 計算( <u>C</u> ) | ヘルプ( <u>H</u> ) |            |        |           |                       |          |                       |    |     |
| D 🖻 📕 📃 🚭 🕴                           |                 |            |        |           |                       |          |                       |    |     |
| ■                                     |                 | <b>し</b>   | 上質条件   | ▶<br>任意土圧 | <mark>約</mark><br>他外力 | <br>限界状態 | <mark>展</mark><br>模式図 |    |     |
| 条件その1 条                               | :件その2           | 部分係        | 数      |           |                       |          |                       |    |     |
| 業務名称(半角60文字まで)<br>サンプルデータ<br>設計其準     | 形状寸法            |            |        | <u>c</u>  |                       |          |                       | Δ, | ルプ  |
| <ul> <li>○ 港湾基準(H30)</li> </ul>       | a. 地表面天端高       | (m)        | 4.50   |           |                       |          |                       | a  |     |
| ○ 港湾基準(H11)                           | b. 矢板天端高        | (m)        | 2.30   |           |                       |          |                       |    |     |
| ○ 許容応力度法(漁港基準)                        | c. 棚天端高         | (m)        | 5.20   | b         |                       |          |                       |    |     |
| 検討ケース                                 | d. 棚底面高         | (m)        | 1.50   |           |                       |          |                       |    |     |
| ☑ 永続状態                                | e. 棚底版幅         | (m)        | 4.50   | d         |                       |          |                       |    |     |
| ✓ L1 地震動                              | f. 設計海底面高       | (m)        | 0.00   |           | ←                     |          |                       | •  |     |
| □ 津波-引き波時                             | g. 海底面の傾斜角      | 自 (度)      | 0.0    |           | h                     |          |                       |    |     |
| 結合計算設計方法                              | h. 矢板: 棚前面か     | らの距離 (m)   | 0.50   |           |                       |          |                       |    |     |
| ○ 許容応力度法                              | 土圧計算範囲下附        | 眼高 (m)     | -20.00 | f         |                       |          |                       |    |     |
| ○ 限界状態設計法                             |                 |            |        | g         |                       |          |                       |    |     |
| タイ材・腹起こし材                             | 丸め方法            |            |        |           |                       |          |                       |    |     |
| ● <b>あ</b> り                          | ○ 五捨五入(JIS      | Z8401 規則A) |        |           |                       |          |                       |    |     |
| O なし                                  | ○四撸五人(JIS       | Z8401 規則B) |        |           |                       |          |                       |    |     |
|                                       |                 |            |        |           |                       |          |                       |    | .:: |

#### [業務名称]

業務名称を入力します。

#### [設計基準]

「港湾基準(H30)」、「港湾基準(H11)」「許容応力度法(漁港基準)」から選択しま す。設計方法によって各照査・検討は次のようになります。

|                       | 許容応力度法<br>(漁港基準) | 港湾基準(H11) | 港湾基準(H30) |
|-----------------------|------------------|-----------|-----------|
| 矢板の照査                 | 許容応力度法           | 許容応力度法    | 信頼性設計法    |
| タイ材・腹起こしの照査           | 許容応力度法           | 許容応力度法    | 信頼性設計法    |
| 杭の応力・支持力<br>負の周面摩擦の検討 | 許容応力度法           | 許容応力度法    | 信頼性設計法    |

#### [検討ケース]

「永続状態」「L1地震動/地震時」「津波-引き波時」から選択します。設計基準 が「許容応力度法(漁港基準)」かつ結合計算設計方法が「許容応力度法」の場合 のみ、津波-引き波時の検討が可能となっています。

参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P567

#### [結合計算設計方法]

結合計算の設計方法を選択します。通常、港湾基準では、「限界状態設計法」を漁 港基準では、「許容応力度法」を選択します。

#### [丸め方法]

計算値の丸め方法を「五捨五入」「四捨五入」選択します。

#### [地表面天端高]

地表面の天端位置の高さを入力します。地表面天端高と主働側土層の第1層目の 高さは必ず同じでなければなりません。

#### [矢板天端高]

矢板の天端位置の高さを入力します。根入れ長の算出時に使用します。

#### [棚天端高]

棚の天端位置を入力します。

#### [棚底面高]

棚の底面位置を入力します。<br/>
矢板に作用する土圧の計算では、この位置から土圧が<br/>
作用します。

#### [棚底面幅]

棚の底面幅を入力します。

#### [設計海底面高]

設計海底面高を入力します。

#### [海底面の傾斜角]

設計海底面傾斜角を入力します。傾斜がない場合は、0.0です。 土圧の計算式:βとして使用します。



## [矢板:棚前面からの距離]

棚版の最左端から前面矢板までの距離を入力します。この値は、上記崩壊面の計算 時に使用します。

## [土圧計算範囲下限高]

本システムは、土層入力が各層毎の上限値を入力するようになっていますので最 終層の下限値の高さを入力します。土圧の計算は、この位置まで行います。

[タイ材・腹起こし材]

タイ材・腹起こし材の有無を「あり」「なし」から指定します。「なし」を選択した場合にはタイ材・腹起こし材の照査は行いません。

# <u>第2タブ(条件その2)</u>

| 棚式係船岸5 Ver2.1.2 - サンブ | ルデータ_H30港湾基準           |                      |                       |      |      |           |          |          | _                     |          |     |
|-----------------------|------------------------|----------------------|-----------------------|------|------|-----------|----------|----------|-----------------------|----------|-----|
| イル(E) データ入力(I) 設筑     | E(E) 計算( <u>C</u> ) ヘル | /プ( <u>H</u> )       |                       |      |      |           |          |          |                       |          |     |
| 🗳 🔚 📃 🎒 🤶             |                        |                      |                       |      |      |           |          |          |                       |          |     |
| □□                    | ₩ <b>■</b><br>第工 前面矢板  | タイ材 オ                | <mark>↓</mark><br>杭寸法 | 腐食   | 土質条件 | ▶<br>任意土圧 | が<br>他外力 | <br>限界状態 | <mark>展</mark><br>模式図 |          |     |
| 条件その1                 | 条件その                   | D2                   |                       | 部分係數 | ¢    |           |          |          |                       |          |     |
|                       |                        |                      |                       |      |      |           |          |          |                       | <u>^</u> | JUE |
| H.W.L.                |                        |                      | 3.54                  |      |      |           |          |          |                       |          |     |
| L.W.L.                |                        |                      | 0.58                  | _    |      |           |          |          |                       |          |     |
| 残留水位                  |                        |                      |                       |      |      |           |          |          |                       |          |     |
| ○ 2/3·(H.W.LL.W.L     | )+L.W.L.(こより計算         |                      |                       |      |      |           |          |          |                       |          |     |
| ○ 1 · (H.W.LL.W.L.)+  | ·L.W.L.により計算           |                      |                       |      |      |           |          |          |                       |          |     |
| 〇 入力値を使用              |                        | R.W.L. (m)           | 2.55                  |      |      |           |          |          |                       |          |     |
| 津波一引き波時               |                        |                      |                       |      |      |           |          |          |                       |          |     |
| 前面水位                  |                        | (m)                  | 0.00                  |      |      |           |          |          |                       |          |     |
| 背面水位                  |                        | (m)                  | 0.00                  |      |      |           |          |          |                       |          |     |
| 単位体積重量                |                        |                      |                       |      |      |           |          |          |                       |          |     |
| 水の単位体積重量              |                        | (kN/m <sup>3</sup> ) | 10.10                 |      |      |           |          |          |                       |          |     |
| 強度                    |                        |                      |                       |      |      |           |          |          |                       |          |     |
| コンクリート 基準備度           |                        | (N/mm*)              | 22.00                 |      |      |           |          |          |                       |          |     |

## [設計潮位]

各潮位H.W.L.、L.W.L.を入力します。

## [残留水位]

残留水位の計算方法あるいは、残留水位を直接入力します。計算式を選択した場 合、残留水位入力項目に計算結果が表示され、入力不可になります。

## [津波ー引き波時]

津波ー引き波時での前面水位、背面水位を入力します。

#### [単位体積重量]

水の単位体積重量を入力します。

### [強度]

杭とフーチングの結合計算で使用するコンクリートの基準強度を入力します。

# <u>第3タブ(部分係数)</u>

| (ル(E) データ入力(D) 影            | <sup>役定(<u>E</u>) 計算(<u>C</u>) ヘルプ(<u>H</u>)</sup> |              |            |        |                  |          |      |          |
|-----------------------------|----------------------------------------------------|--------------|------------|--------|------------------|----------|------|----------|
|                             | ··· ··                                             |              |            |        | \$/ <b>\$</b>    | 吞        |      |          |
| □□□                         | 上部工 前面矢板 タイ                                        | 材杭寸法         | 腐食 土質条     | 件 任意土圧 | 他外力限             | ₽<br>界状態 | 模式図  |          |
| 条件その1                       | 条件その2                                              |              | 3分係数       |        |                  |          |      |          |
| 矢板壁の根入れ長―                   |                                                    |              |            |        |                  |          |      | l        |
| フリーアースサポート法・                |                                                    | タイ材          | 永続状態       | 1地震動   | 杭の応力             |          | 永続状態 | (11) 地雷香 |
| 文郎土層 💿 砂算                   | 質土 〇 粘性土                                           | 抵抗項          | 0.64       | 1.00   | 抵抗項              |          | 1.00 | 1.00     |
| 水                           | <sup>続状態</sup> L1 地震動                              | 荷重項          | 1.29       | 1.00   | 荷重項              |          | 1.00 | 1.00     |
| 砂質土                         | . 粘性土                                              | 調整係数         | 1.00       | 1.67   | 調整係数             |          | 1.67 | 1.12     |
| 抵抗項 <u>0.72</u><br>荷重項 1.09 | 1 11 1 00                                          | 89 +2 -1     |            |        | 柿の古持力            |          |      |          |
| 間空項<br>調整係数 1.00            | 1.00 1.20                                          | NR NGCO      | 永続状態       | L1 地震動 | 11100×1777       |          | 永続状態 | L1 地震重   |
|                             | 1.00 1.20                                          | 抵抗項          | 1.00       | 1.00   | 抵抗項              |          | 1.00 | 1.00     |
| たわみ曲線法                      | 永続状態 L1 地震動                                        | 荷重項          | 1.00       | 1.00   | 荷重項              |          | 1.00 | 1.00     |
| 抵抗項                         | 1.00 1.00                                          | 調整係数         | 1.67       | 1.12   | 調整係数             | 押込杭      | 2.50 | 1.50     |
| 荷重項                         | 1.00 1.00                                          | 滑動           |            |        |                  | 引抜杭      | 3.00 | 2.50     |
| 調整係数                        | 1.20 1.20                                          | 1015-5       | 永続状態       | L1 地震動 | tr - Eller atria |          |      |          |
| モ板壁の広力度                     |                                                    | 抵 <u>抗</u> 坦 | 0.87       | 1.00   | 一負の周面摩拶          | の便討一     | 杭先端  | 降伏       |
| へい エッシュンション フリーアースサポート 法一   | 2 ATT 1 146 10 - F. KL                             | 何里坦          | 1.06       | 1.00   |                  |          | 支持力  | 応力度      |
|                             | 永続祆感 L1 地震動                                        | 調登1余数        | 1.00       | 1.20   | 抵抗項              |          | 1.00 | 1.00     |
| 抵抗填                         | 1.10 1.00                                          | 転倒           | 수, 상품에도 삼백 | 山地南升   | 荷重項              |          | 1.00 | 1.00     |
| 间里坝<br>洞敷係数                 | 1.00 1.10                                          | 开拉顶          | 7八和元1天息    | 1 00   | 調整係数             |          | 1.20 | 1.00     |
| 间金税数                        | 1.00 <u>1.12</u>                                   | 抵抗抗          | 1 22       | 1.00   |                  |          |      |          |
| たわみ曲線法                      | 永続状態 L1 地震動                                        | 回主识<br>調敕係粘  | 1.23       | 1 10   |                  |          |      |          |
| 抵抗項                         | 1.00 1.00                                          | 回回国家的现象的     | 1.00       | 1.10   |                  |          |      |          |
| 荷重項                         | 1.00 1.00                                          |              |            |        |                  |          |      |          |
| 調整係数                        | 1.67 1.12                                          |              |            |        |                  |          |      |          |

## [部分係数]

部分係数の設定を行います。基本条件-条件その1-設計基準で【港湾基準(H30)】 を指定した場合に選択できます。

永続状態で抵抗項・荷重項・調整係数が同時に設定できる箇所について 抵抗項・荷重項のいずれかが1.0以外の数値が設定される場合、照査には 抵抗項・荷重項の部分係数が採用されます。

抵抗項・荷重項が共に1.0である場合、照査には調整係数が採用されます。

# <u> 第3タブ (安全率)</u>

| 📊 棚式係船岸5 Ver2.1.2 - サン                                    | プルデータ_許容応力度法             |                   |      |               |           |            |           | -                     | ×      |
|-----------------------------------------------------------|--------------------------|-------------------|------|---------------|-----------|------------|-----------|-----------------------|--------|
| ファイル(E) データ入力(!) 設                                        | 定(E) 計算( <u>C</u> ) ヘル   | プ( <u>H</u> )     |      |               |           |            |           |                       |        |
| 🗅 🛩 🖶 📃 🚑 🤶                                               |                          |                   |      |               |           |            |           |                       |        |
| ●●                                                        | ₩ <b>₩</b><br>部工 前面矢板    | タイ材 杭寸ジ           | ▲ 腐食 | ▲ <b>算</b> 条件 | ▶<br>任意土圧 | ₩<br>他外力 『 | て<br>艮界状態 | <mark>展</mark><br>模式図 |        |
| 条件その1                                                     | 条件その                     | D2                | 安全率  |               |           |            |           |                       |        |
| - 根入れ安全率(※)<br>- フリーアースサポート<br>● 砂賀土 F=1 5<br>○ 粘性土 F=1 2 | 法                        |                   |      |               |           |            |           |                       | 1<br>D |
| 常時<br>地震時                                                 | 1.0                      | *1<br>*2          |      |               |           |            |           |                       |        |
| たわみ曲線法                                                    |                          |                   |      |               |           |            |           |                       |        |
| 常時                                                        | 0.0                      | *2<br>*2          |      |               |           |            |           |                       |        |
| JU Jpg Urf                                                |                          |                   |      |               |           |            |           |                       |        |
| ※1.「0.0」を設定し<br>※2.「0.0」を設定し                              | た場合、選択項目0<br>た場合、1.2が設定さ | )値が設定されます<br>5れます |      |               |           |            |           |                       |        |
|                                                           |                          |                   |      |               |           |            |           |                       |        |
|                                                           |                          |                   |      |               |           |            |           |                       |        |
|                                                           |                          |                   |      |               |           |            |           |                       |        |

矢板根入れ長の安全率の設定を行います。基本条件-条件その1-設計基準で【港湾基準 (H11)】【許容応力度法(漁港基準)】を指定した場合に選択できます。

## [根入れ安全率-フリーアースサポート法]

フリーアースサポート法で矢板を計算する場合の根入れ安全率です。矢板の計算 方法がたわみ曲線法の場合、フリーアースサポート法との根入れの比較を行うた め入力が必要です。矢板の計算方法がロウの方法の場合、フリーアースサポート法 で計算し、計算結果を補正する方法をとっていますので入力が必要です。

[根入れ安全率-たわみ曲線法]

たわみ曲線法で根入れ長を計算する場合の安全率を指定します。0.0なら1.2を採 用します。

# <u>4-2.計算条件</u>

棚式係船岸の前面矢板の計算条件、地震時の計算条件を指定します。 画面の切り替えは(前面矢板、土質、L1地震動/地震時、杭材)をクリックします。

# <u> 第1タブ(前面矢板)</u>

| 欄 棚式係船岸5 Ver2.1.2 - サンブルデータ_H30港湾基準                                                                                                                                                                                      |                                                                                                                                                          |              | – 🗆 🗙          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| ファイル( <u>F</u> ) データ入力( <u>I</u> ) 設定( <u>E</u> ) 計算( <u>C</u> ) ヘルプ( <u>H</u> )                                                                                                                                         |                                                                                                                                                          |              |                |
| D 🖆 🖫   👮 🚑   🤋                                                                                                                                                                                                          |                                                                                                                                                          |              |                |
|                                                                                                                                                                                                                          | ■ ■ ■<br>杭寸法 腐食 土質条件                                                                                                                                     | ▶            | ▼ ■■<br>状態 模式図 |
| 前面矢板                                                                                                                                                                                                                     | L1 地震動                                                                                                                                                   | 杭材           |                |
| <ul> <li>矢板の計算方法</li> <li>フリーアースサポート法</li> <li>たわみ曲線法</li> <li>ロウの方法</li> <li>フリーアースサポート法</li> <li>モーメントの計算範囲</li> <li>棚底面高~仮想海底面</li> <li>棚底面高~設計海底面高</li> <li>仮想海底面</li> <li>主働側・受働側強度のつりあい位置</li> <li>任意指定</li> </ul> | <ul> <li>□ウの方法</li> <li>地盤反力係数(MN/m<sup>3</sup>) 28</li> <li>Mmax,タイ材取付点反力修正用</li> <li>● 腐食前</li> <li>● 腐食後</li> <li>根入れ長</li> <li>丸め単位 (m) 1</li> </ul> | 3.0<br>月断面性能 | C4( ^          |
| 仮想海底面位置(m)                                                                                                                                                                                                               | ✓ 根入れ深度 (m) -f                                                                                                                                           | 3.20         |                |
| 永続状態         0.000           L1 地震動         0.000           津波引波時         0.000                                                                                                                                          | 曲げモーメントー矢板長分割ピッチ<br>0                                                                                                                                    | .5m ~        |                |
|                                                                                                                                                                                                                          |                                                                                                                                                          |              |                |

## [矢板の計算方法]

矢板の計算方法を「フリーアースサポート法」、「たわみ曲線法」、「ロウの方法」 から選択します。

[フリーアースサポート法-モーメントの計算範囲]

矢板の計算方法がフリーアースサポート法の場合、土圧・水圧によるモーメントを 考える範囲です。尚、たわみ曲線法及びロウの方法の場合、無条件に設計海底面ま でとなります。

## [フリーアースサポート法-仮想海底面]

フリーアースサポート法で計算を行う場合でモーメントの計算範囲を「棚底面高 ~仮想海底面」「棚底面高~設計海底面高」から指定します。

「棚底面高~仮想海底面」を選択した場合、仮想海底面位置を「主働側・受働側強 度のつりあい位置」「任意指定」から指定します。



## [ロウの方法-地盤反力係数]

シミラリティナンバー (ω)を算出するための地盤反力係数 (Ι h)を入力します。

#### [ロウの方法-Mmax、タイ材取付点反力修正用断面性能]

フリーアースサポート法により算出したMmax及び、タイ材取付け点反力をロウの 方法により補正します。その場合に使用する断面性能を腐食前か腐食後で指定し ます。根入れ長照査には、腐食前の断面性能を無条件で使用します。

#### [丸め単位]

根入れ長を丸める単位をm単位で指定します。例えば、50cm単位で丸めるのであ れば、0.5と入力します。

## [根入れ深度(m)]

任意の根入れ深度を入力します。根入れ深度を入力する場合は、チェックボックス をチェックして入力して下さい。入力された根入れ深度から矢板長を計算します。

## [曲げモーメント-矢板長分割ピッチ]

矢板の曲げモーメント計算時での矢板長の分割ピッチを「0.5m」「0.2m」「0.1m」 から指定します。

# <u>第2タブ(土質)</u>



## [主働土圧の計算方法]

棚版の最右端から下ろした崩壊面と矢板との交点位置以深の土層について、背面 土の重量と上載荷重を考慮して土圧を計算するかどうかの選択を指定します。 ただし、自然崩壊角を用いて土圧を計算する方法(直線補間)は任意土圧の場合に は適用されません。

(背面土と上載荷重を考慮して土圧を計算する方法)



(自然崩壊角を用いて土圧を計算する方法)



[粘着基準高]

粘着基準線の高さを指定します。各粘土層で土質条件に粘着勾配が設定された際の粘着力の算出に使用します。

粘着カ=粘着基準面での粘着カ+(標高ー粘着基準高)×粘着勾配

杭の設計で、K値の算定に用いる粘着力を使用する場合には次式で算定されます。

粘着カ=粘着基準面での粘着カ

+ { (層上限標高+層下限標高)÷2-粘着基準高} ×粘着勾配

設定した粘土層が最下層の場合、

層下限標高は土圧計算範囲下限高が設定されます。

#### [地盤反力係数の推定に用いる係数α]

[K値計算方法]で「道示N→k」「道示EO→k」を選択した場合でのαの値を入力 します。

[粘性土 C→N値計算時に使用する式 [qu (N/mm<sup>2</sup>)=N/X]の分母の値 (X)]

粘性土のN値を粘着カから計算する場合の式の内、qu(N/mm<sup>2</sup>)=N/X式で使用する分 母の値を入力します。通常40.0~80.0を入力します。

#### [粘性土-主働土圧強度の取り扱い-永続状態(常時)]

常時での主働土圧強度の設定を以下の3つの中から指定します。 ①「(式-1)と(式-2)を比較して構造物に危険となる土圧分布をとる」 ②「(式-1)で土圧を計算する」 ③「(式-2)で土圧を計算する」 漁港基準では、通常①を指定します。 参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P152

#### [粘性土-主働土圧強度の取り扱い-L1地震動(地震時)]

L1地震動(地震時)での主働土圧強度の設定を以下の3つの中から指定します。 ①「(式-3)と(式-4)を比較して構造物に危険となる土圧分布をとる」 ②「(式-3)で土圧を計算する」 ③「(式-4)で土圧を計算する」 漁港基準では、通常①を指定します。 参照:「全国漁港漁場協会,漁港・漁場の施設の設計参考書 2015年版」P356 また、ζ算定式での√内の値が負となる場合の対処について次の4つの方法の中 から計算方法を選択することが可能です。 ・「崩壊角規定値」 ・「岡部式」

- ・「常時土圧式」
- ΓΣγh+wj

負の値となった場合として、次の記述があります。

『Q&A 構造物設計事例集』より抜粋

√ 内がマイナスになった場合は、物理的に意味がないので、地盤改良で c を大きく するか、 γ を小さくすることで対応する必要があります。

「岡部式」を選択した場合、以下の式を用いて土圧強度を計算します。

 $p_{a} = \frac{(\Sigma \gamma h + w) \sin(\alpha + \theta)}{\cos \theta \sin \alpha} - \frac{c}{\cos \theta \sin \alpha}$   $\alpha = 90^{\circ} - \mu \quad , \quad \mu = \tan^{-1} \frac{\overline{a}}{\sqrt{\overline{b}^{2} - \overline{a}^{2}}}$   $\overline{a} = \sin \theta \quad , \quad \overline{b} = \sin \theta + \frac{2c \cdot \cos \theta}{\Sigma \gamma h + w}$ 参照: 「土圧係数図表」 P. 40

## [主働崩壊角既定值]

粘性土崩壊角の既定値を入力します。崩壊面を上げていく場合や、地震時粘性土崩 壊角算出式のルートの中身が0以下になった場合に使用します。

# [主働側自然崩壞角既定值]

主働土圧で、自然崩壊角を用いて計算する場合に使用する角度を入力します。

# <u>第3タブ(L1地震動/地震時)</u>



#### [設計震度]

設計震度の入力方法を「直接入力」、「係数により計算」から選択します。設計基 準等により、次のような選択となります。

| 許容応力度法<br>(漁港基準) | 港湾基準(H11)       | 港湾基準(H30) |
|------------------|-----------------|-----------|
| 直接入力             | 直接入力<br>係数により計算 | 直接入力      |

(係数により計算する場合)

設計震度=地域別震度×地盤種別係数×重要度係数

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.262

参照:『漁港・漁場の施設の設計参考図書 2015年』P.160

#### [見かけの震度]

見かけの震度の入力方法を「直接入力」、「一般式(γ/(γ-10)・k)」、「二 建の提案式」、「荒井・横井の提案式」から選択します。「直接入力」を選択し、 見かけの震度を入力した場合、全土層に対して、入力した見かけの震度が採用され ます。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.356

参照:『漁港・漁場の施設の設計参考図書 2015年』P.154

#### [動水圧の作用]

矢板壁に動水圧を作用させることができます。一般に、見かけの震度を「荒井・横井の提案式」で計算する場合に作用させるようになっています。

#### [震度の取り扱い/R.W.L.位置]

残留水位(R.W.L.)位置の土圧強度を計算する場合に使用する震度の取り扱いを 「パターン1」「パターン2」から指定します。



通常、荒井・横井の提案式を用いた場合、水面下では見かけの震度を用います。したがって、通常「パターン1」を選択します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.357

参照:『漁港・漁場の施設の設計参考図書 2015年』P.155

## [震度の取り扱い/L.W.L.位置]

L.W.L. 位置の土圧強度を計算する場合に使用する震度の取り扱いを「パターン1」 「パターン2」から指定します。



用いる

通常、荒井・横井の提案式を用いた場合、水面下では見かけの震度を用います。したがって、通常「パターン1」を選択します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.357

参照:『漁港・漁場の施設の設計参考図書 2015年』P.155

#### [地震時粘性土の取扱い/土圧計算方法]

地震時・粘性土の主働土圧を計算する場合の計算方法を以下の4つの中から指定 して下さい。次の文献の解釈によります。設計事例集などに使用されている方法 は、3の方法です。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.356 (3)海底面下における粘性土の地震時土圧を算出する場合、海底面においては見か けの震度を用いて土圧を求めるが、海底面下10m以下においては震度を0として土 圧を求めることができる。ただし、海底面下10mにおける土圧が海底面における値 より小さい場合には、海底面における値を用いるべきである。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.154

(3) 海底面下における地震時の土圧の算定

海底面下における粘性土の地震時の土圧を算出する場合、海底面においては見かけの震度k'を用いて土圧を求めるが、海底面下10m以下においては震度をゼロとして土圧を求めてよい。ただし、海底面下10mにおける土圧が海底面における値より小さい場合には、海底面における値を用いる。

- 1. 上・下共に見かけの震度を用いて土圧を計算する
- 2. 海底面~海底面-10m間の土圧強度を直線補間(土層下限値のみ補間で算出)
- 3. 海底面~海底面-10m間の土圧強度を直線補間(土層上・下限値共に補間で算出)
- 4. 海底面~海底面-10m間の見かけの震度を直線補間
- ※上·下共に見かけの震度を用いる場合、海底面-10m以下の粘土層についてのみ、 見かけの震度を0として計算します。

次のような土層での主働土圧を計算する場合、上記の4つの計算方法では次のよう になります。



① 粘性土層での上限・下限それぞれの見かけの震度 k<sub>1</sub>, k<sub>2</sub>を算出します。



② ①で算定した k<sub>1</sub>, k<sub>2</sub>を用いて土圧強度 A、 P<sub>2</sub>を算定します。



- 《2. 海底面~海底面-10m間の土圧強度を直線補間(土層下限値のみ補間で算出)》
  - DL~DL-10.0m間の粘性土の上限位置はそのままで、下限値のみDL-10.0mとし、 その間を同一の粘性土として、見かけの震度 kを計算します。計算した k1を用 いて土層上限位置の土圧強度を計算します。この時、計算に使用する粘着力C は実際の土層位置のCを用います。DL-10.0m位置の土圧強度は k2=0.0として 計算します。



② ①で計算した土圧強度A、Aを元に直線補間を行い、粘性土の下限位置での土 圧強度P 2を算出します。算出したP 2がAよりも小さかった場合、Aの値を P 2の値として採用するかどうかの選択が可能です。



- 《3. 海底面~海底面-10m間の土圧強度を直線補間(土層上・下限値共に補間で算出)》
  - DL~DL-10.0m間を同一の粘性土として見かけの震度 k<sub>1</sub>, k<sub>2</sub>を計算します。計算 した kを用いてDL位置の土圧強度を計算します。この時、計算に使用する粘着 力CはDL位置のCを用います。

DL-10.0m位置の土圧強度は k<sub>2</sub>=0.0として計算します。



- ①で計算した土圧強度 Pi, P2を元に直線補間を行い、実際の粘性土層の上限位置、下限位置での土圧強度 P'1, P'2を算出します。
  - 算出した P'1, P'2が Piよりも小さかった場合、Piの値を Pi, P2の値として採用するかどうかの選択が可能です。


《4. 海底面~海底面-10m間の見かけの震度を直線補間》



① 粘性土層での上限の震度 k1を算出します。

② ①で算出した見かけの震度 k1をDL位置の見かけの震度、DL-10m位置の見かけの 震度は0.0と仮定して直線補間を行い、実際の粘性土の上限位置、下限位置で の見かけの震度 k'1, k'2を算出します。



③ ②で求めた見かけの震度 κ'<sub>1</sub>, κ'<sub>2</sub>からそれぞれの土圧強度を算定します。同時に、DL位置では見かけの震度 κ<sub>1</sub>を用いて土圧強度 R<sub>L</sub>を計算します。この場合、計算に使用する粘着力C及び ΣγhはDL位置での値を用います。算出した P'<sub>1</sub>, P'<sub>2</sub>が R<sub>L</sub>よりも小さかった場合、 R<sub>L</sub>の値を P'<sub>1</sub>, P'<sub>2</sub>の値として採用する かどうかの選択が可能です。



[海底面以下にある粘土層の土圧採用値]

「(海底面~海底面-10m間)土層上限や海底面での土圧強度と比較」を有効とした場合、[粘性土の取扱い/土圧計算方法]の条件により、次のような比較を行います。

 (「上・下共に見かけの震度を用いて土圧を計算する」及び、「海底面~海底面-10m間の土圧強度を直線補完 (土層下限値のみ補完で算出)」の場合)
 土層上限と下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下限値に上限値を採用。

(「海底面~海底面-10m間の土圧強度を直線補完 (土層上・下限値共に補完で算出)」及び、「海底面~海底面-10m間の見かけの震度を直線補完」の場合) 海底面と土層下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下限値に 海底面の値を採用。

「(海底面-10m以深)土層上限の土圧強度と比較」を有効とした場合、次のよう な比較を行います。

土層上限と下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下限値に上 限値を採用。



[設計震度の丸め方法]

設計震度を係数から計算した場合の震度の丸め方法を選択します。通常は、①を選 択します。本項目は、許容応力度法の場合のみ設定可能です。

・四捨五入

・二捨三入・七捨八入

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.262

[見かけの震度の丸め方法]

見かけの震度の丸め方法を選択します。通常は、①を選択します。本項目は、港湾 基準-部分係数を考慮する検討の場合、設定不可となり四捨五入または二捨三入・ 七捨八入が適用されます。

・四捨五入(※設計条件の丸め方法に準ずる)

・二捨三入・七捨八入

# <u>第4タブ(杭材)</u>

| € 🖬   🖳 🎒 📍 🣍                                                                                      |                                              |                                                                                              |                                                |
|----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                    |                                              |                                                                                              |                                                |
| 計算方法<br><ul> <li>         ・設計基準の方法(仮想固)         ・変位法(無限長杭)         ・変位法(有限長杭)         ・</li> </ul> | 定点法)                                         | 変位法<br>「断面計算で使用する曲<br>● 杭頭固定の曲げモー<br>○ 杭頭固定と杭頭ピン                                             | 【<br>げモーメント<br>-メントを使用<br>の曲げモーメントを比較し、大きい方を使用 |
| - 杭先端の支持条件<br>● ヒンジ<br>○ 自由                                                                        | 杭形式<br>● 鋼管杭<br>○ H形鋼杭                       | <ul> <li>連結位置の低減の考慮</li> <li>● しない</li> <li>○ する</li> </ul>                                  | 低減率(%) 100                                     |
| ヤング係数<br>杭の縦方向の間隔                                                                                  | (kN/mm <sup>2</sup> ) 0.0<br>(m) <u>3.20</u> | <ul> <li>杭の軸方向バネ定数の</li> <li>● 平成8年道路橋示</li> <li>○ 平成24年道路橋示</li> <li>○ 平成29年道路橋示</li> </ul> | 設定<br>方書による算定<br>:方書による算定<br>:方書による算定          |
| 町面諸元<br>杭の計算 ()腐                                                                                   | 食前 <b>○</b> 腐食後                              | ○ a = 1.0として 算定<br>突出長計算用主働崩壊角<br>○ 設計海底面                                                    | 有立ち上げ位置                                        |
| 成志固定点1713 0 腐<br>杭応力の照査 0 腐                                                                        | 良前 <b>○</b> 腐食後                              | <ul> <li>○ 仮想海底面</li> <li>座屈長計算方法</li> <li>○ 突出長 + 1 / 8</li> </ul>                          | 仮想固定点1/8の取り扱い<br>○ 実寸長                         |
| 支持力の照査 〇腐                                                                                          | 食前 💿 腐食後                                     | <ul><li>〇 突出長のみ</li></ul>                                                                    |                                                |

#### [計算方法]

杭の計算方法を「設計基準の方法(仮想固定点法)」、「変位法(無限長杭)」、 「変位法(有限長杭)」から選択します。

「変位法(有限長杭)」を選択した場合、各杭の多層地盤を考慮したバネ定数を計 算し、変位法で解く方法を用いています。

※日本道路協会, 杭基礎設計便覧(平成4年10月 P202)

### [杭先端の支持条件]

杭の計算方法が「変位法(有限長)」の場合の杭の先端支持条件を指定します。通 常は、ヒンジで計算します。

### [杭形式]

杭形式を「鋼管杭」「H形鋼杭」から選択します。

### [ヤング係数]

使用する杭のヤング係数を入力します。0.0を入力すれば以下の値を採用します。 鋼矢板・鋼管矢板 :E=200kN/mm<sup>2</sup>

# [杭の縦方向の間隔]

縦断方向の杭の中心から次の杭の中心までの距離を入力します。この値は杭に作 用する外力の計算載荷幅になります。

#### [断面諸元]

杭の計算、仮想固定点1/β、杭の応力照査、支持力の照査に用いる杭断面諸元を「腐 食前」「腐食後」から選択します。

### [変位法-断面計算で使用する曲げモーメント]

断面計算で使用する曲げモーメントを選択します。杭の計算方法で「変位法(無限長)」か、あるいは「変位法(有限長)」を指定した場合、有効となります。

#### [変位法-連結位置の杭の低減率]

杭を連結した場合の応力照査で、許容応力度の低減を行うかどうかの選択です。考 慮するならば、低減率を入力します。

#### [変位法-杭の軸方向バネ定数の設定]

杭の軸方向バネ定数の算定方法を「平成8年道路橋示方書」「平成24年道路橋示方 書」「平成29年道路橋示方書」「a=1.0として算定」から選択します。

#### [突出長計算用主働崩壊角立ち上げ位置]

杭の突出長を計算するための崩壊面の立ち上げ位置です。仮想海底面かあるいは、 仮想海底面(フリーアースサポート法)/曲げモーメント第一0点(たわみ曲線法) の中から選択します。ロウの方法の場合、無条件に設計海底面となります。

#### [座屈長計算方法]

座屈長を計算する方法を「突出長+1/β」、「突出長のみ」から選択します。座 屈長は軸方向許容(降伏)応力度の算定で使用します。

#### [仮想固定点1/βの取り扱い]

斜杭に仮想固定点を設定する場合の仮想固定点の取り方を「実寸長」「鉛直方向(標高)」から指定します。特性値βは、「実寸長」を選択した場合ではin batter/out batterによる傾斜角の補正を行った値を使用しています。「鉛直方向(標高)」を選択した場合では、傾斜角による補正は行っておりません。



上部工に関するデータ(検討点、関連ブロック、土圧作用点など)を指定します。



画面の点線に表記される数値は基本条件で設定した各数値となっております。



1) 座標の入力・削除・修正を行う

1)上部工を構成する全座標データを入力します。
 座標入カボタンをクリックします。

②座標入力用ダイアログが表示されます。 座標の入力・削除・修正が終わったらOKボタンをクリックして下さい。ダイアログを閉じてメニュー画面に戻ります。編集データを破棄する場合は、キャンセルボタンをクリックして下さい。

※ 座標を削除した場合、その座標に関連する線分・ブロ ック・検討点・土圧作用点も同時に削除されます。



※座標を設定する際には基本条件で設定した「上部エ天端高」「上部エ下端高」「地表 面天端高」とy座標が一致するように設定を行って下さい。



正しい入力

上部エ天端高と上部エ下端高と地表面天 端高が一致している 間違った入力

上部エ天端高と上部エ下端高と地表面天 端高が一致していない

# 2)線分の追加を行う

①線分追加ボタンをクリックします。

追加する線分の始点となる座標をマウスで左クリックし ます。右クリックすれば追加処理を終了します。

②追加する線分の終点となる座標をマウスで左クリック します。

右クリックすれば始点の指定に戻ります。

連続した線分の場合は、次々に終点を指定して下さい。

既存の線分上に線分を追加した場合、追加した線分データは登録されます。始点の 移動のみを行います。



# 3)線分の削除を行う

① 線分削除ボタンをクリックします。

削除する線分をマウスで左クリックします。(複数選択可) 選択された線分が黄色になります。

ー度選択された線分を再び選択すると解除となります。右 ボタンをクリックすれば、選択した線分すべてが削除され ます。



座標入力 線分追加 線分削除

ブロック登録 ブロック登録

こをクリック

検討点削除

検討点編集

関連ブロック設定 土圧作用点設定

※線分を削除した場合、その線分に関連するブロックも同時に削除されます。

# 4) ブロックの登録を行う

① ブロック登録ボタンをクリックします。

登録するブロックの内側になる線分をマウスで左クリックして下さい。右クリックすればメニューに戻ります。

②ブロックの外周が選択できれば選択した外周が黄色で 表示されます。

ブロック番号を表示する位置をマウスで左クリックして 下さい。右クリックすれば外周の選択に戻ります。

図のダイアログを表示します。各項目を入力して下さい。

ブロック名称は、関連ブロックの処理等 で必要です。必ず入力して下さい。その 場合、同一名称は入力しないで下さい。

飽和重量は、水中部分の棚重量を計算す る場合に使用します。該当する飽和重量 が存在しない材質の場合は、0.0かある いは、空中の単位体積重量を入力して下 さい。0.0を入力した場合は、空中の単位 体積重量を使用します。

| ブロック編集     |        |
|------------|--------|
| ブロック名称     | 波返工    |
| ─単位体積重量(k) | √/m3)  |
| 空中重量       | 23.000 |
| 水中重量       | 12.700 |
| 飽和重量       | 0.000  |
| OK         | キャンセル  |

全て入力し終えたらOKボタンをクリックして下さい。データを登録し、外周の選択に戻ります。キャンセルボタンをクリックすればデータを破棄し、外周の選択に 戻ります。

※極稀に歪なブロック形状を設定した場合にブロックの重量計算が正しく行われ ない場合があります。そのような場合はブロックの設定を解除した後、ブロックを 分割して、再度ブロックを設定して下さい。 5) ブロックの削除を行う

ブロック削除ボタンをクリックします。

削除するブロックのブロック番号をマウスで左クリック して下さい。右クリックすればメニューに戻ります。

ブロックが選択されれば、選択されたブロックが黄色で表 示され、確認メッセージが表示されます。

削除するのであれば、マウスで左クリックして下さい。ブ ロックが削除され、ブロック番号の指定に戻ります。右ク リックすれば削除を行わないでブロック番号の選択に戻 ります。

6) ブロック番号の移動を行う

ブロック番号移動ボタンをクリックします。

移動するブロック番号をマウスで左クリックを押したま ま移動(ドラッグ)して下さい。ボタンを離した位置が移 動先になります。





# <u>7)ブロックの登録内容を変更する</u>

ブロック編集ボタンをクリックします。 登録内容を変更するブロックのブロック番号をマウスで 左クリックして下さい。

ブロック登録時と同じ下図のダイアログを表示します。必要な項目を修正して下さい。

| ブロック名称     | 波返工                |  |  |  |  |
|------------|--------------------|--|--|--|--|
| -単位体積重量(kl | N/m <sup>3</sup> ) |  |  |  |  |
| 空中重量       | 23.000             |  |  |  |  |
| 水中重量       | 12.700             |  |  |  |  |
| 飽和重量       | 0.000              |  |  |  |  |



全て入力し終えたらOKボタンをクリック して下さい。データを登録し、ブロック番号 の指定に戻ります。キャンセルボタンをクリ ックすれば修正データを破棄し、ブロック番 号の指定に戻ります。

## 8)検討点を登録する

検討点登録ボタンをクリックします。 検討点を設定する測点をマウスで左クリックして下さい。 右クリックすればメニューに戻ります。

下図のダイアログが表示されます。静止摩擦係数をコンボ ボックスから選択するかもしくは、直接入力して下さい。



くは、直接入力して下さい。 静止摩擦係数が設定できれ ばのKボタンをクリックし て下さい。データを登録し、 検討点の設定に戻ります。 キャンセルボタンをクリッ クすればデータを破棄し、 検討点の設定に戻ります。



※棚全体の検討は、設定された検討点の最終検討点位置を使用します。したがって、検討点は、高い位置から低い位置に向かう順番で設定して下さい。 ※検討点は、少なくとも1点以上設定して下さい。

# 9)検討点を削除する

検討点削除ボタンをクリックします。 削除する検討点をマウスで左クリックして下さい。右クリ ックすればメニューに戻ります。 検討点が選択されれば、選択された検討点が黄色で表示さ れ、確認メッセージが表示されます。 削除するのであれば、マウスで左クリックして下さい。検 討点が削除され、削除する検討点の指定に戻ります。右ク リックすれば削除を行わないで削除する検討点の選択に 戻ります。

※検討点を削除した場合、その検討点に関連する土圧作用 点・関連ブロックも同時に削除されます。

### 10)検討点の登録内容を変更する

検討点編集ボタンをクリックします。

登録内容を変更する検討点をマウスで左クリックして下 さい。

検討点追加時と同じ下図のダイアログを表示します。静止 摩擦係数を表の中から選択するか、入力して下さい。



静止摩擦係数が設定できれ ばOKボタンをクリックし て下さい。データを登録し、 検討点の指定に戻ります。 キャンセルボタンをクリッ クすればデータを破棄し、 検討点の指定に戻ります。



土圧作用点設定

# 11) 関連ブロックを設定/解除する

関連ブロック設定ボタンをクリックします。 関連ブロックを設定する検討点をマウスで左クリックし て下さい。右クリックすればメニューに戻ります。

検討点が選択されれば、選択された検討点が黄色で表示され、既に設定されているブロックがあれば同じく黄色で表示します。



関連ブロックとするブロック のブロック番号をマウスで左 クリックして下さい。右クリッ クすれば、関連ブロックを決定 し、検討点の指定に戻ります。

既に設定されているブロック をクリックすれば、解除となり 表示が白色になります。



※土圧作用点は、必ず高い位置から低い位置に行く順番で設定して下さい。逆にすると計算が正常に行われません。

# 12) 土圧作用点を設定/解除する

土圧作用点設定ボタンをクリックします。 土圧作用点を設定する検討点をマウスで左クリックし て下さい。右クリックすればメニューに戻ります。 検討点が選択されれば、選択された検討点が黄色で表 示され、既に設定されている土圧作用点があれば緑色 で表示します。





土圧作用点とする測点を 左クリックして下さい。 右クリックすれば、土圧 作用点を決定し、検討点 の指定に戻ります。

土圧作用点設定

既に設定されている土圧作用点をクリックすれば、解除となり削除されます。その際、土圧作用点の番号を詰め替えます。

次のような上部エブロックに土圧作用点を設定した場合、土圧作用点1と2の間 で上部工に作用する土圧を考える際に用いる壁面が鉛直となす角度ψは次のよう に算定されます。





ψが0になるようにするには次のよう
に土ブロックを設けて土圧作用点を設
定します。



### 13) 画面の拡大を行う

画面の左下にあるツールバーのボタン群から右 図の拡大ボタンをクリックしてください。拡大モ ードに移行します。

拡大領域の基準となる隅の位置をマウスで左ク リックして下さい。右クリックすれば拡大モード を終了します。

マウスを移動するとラバーバンドが表示されま す。拡大領域の終点位置(始点位置の対角線上) まで移動しマウスの左ボタンをクリックして下 さい。 -+1.50 0.00

指定した領域が図形表示領域全体になるように画面が拡大されます。画面を表示 し終われば再び、始点位置の指定に戻ります。

# 14) 画面の縮小を行う

画面の左下にあるツールバーのボタン群から右 図の縮小ボタンをクリックしてください。縮小モ ードに移行します。

縮小領域の基準となる隅の位置をマウスで左ク リックして下さい。右クリックすれば縮小モード を終了します。

マウスを移動するとラバーバンドが表示されま す。拡大領域の終点位置(始点位置の対角線上) まで移動しマウスの左ボタンをクリックして下 さい。



指定した領域が図形表示領域全体になるように画面が縮小されます。画面を表示 し終われば再び、始点位置の指定に戻ります。

15) 画面の全体表示を行う

①画面の左下にあるツールバーのボタン群から 右図の全体表示ボタンをクリックしてください。 全図形データが画面内に収まるようにスケール 計算し、表示します。マウスで右図のようにツー ルバーボタンかあるいは、メニューの"全体表示" を左クリックして下さい。

図形データが画面内に収まるように計算し、表示 します。

| +1.50 |      |
|-------|------|
|       |      |
|       | 0.00 |
|       | 0.00 |

# <u>16) ブロック分割手法</u>

本システムでは上部工を構成するブロックの重量は、三角形や四角形に分割して 計算を行います。その分割手法を「パターン1」「パターン2」から選択できます。

設定したブロック形状での凹凸が著しいと「パターン1」では、うまくブロック分 割できない場合があります。

その際は「パターン2」を選択して下さい。



# <u>4-4. 前面矢板</u>

前面矢板の計算条件や矢板の形式などを指定します。 矢板の設定画面は、3タブ(画面)の構成となります。画面切り替えはタブ(矢板 条件、矢板任意指定、鋼管矢板指定)をクリックします。

## <u>第1タブ(矢板条件)</u>

| 📊 棚式係船岸5 Ver2.1.2 - サンブルデータ_H30港湾基準                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                            | _          | o x |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|------------|-----|
| ファイル( <u>F</u> ) データ入力(I) 設定(E) 計算( <u>C</u> ) ヘルプ( <u>H</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                            |            |     |
| D 😅 🖶   🧮 🎒   💡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                            |            |     |
| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ | 約 〒<br>他外力 限界状態 朴          | 莫式図        |     |
| 矢板条件 矢板任意指定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                            |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                            |            | ヘルプ |
| 矢板形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 矢板の材質                                 |                            |            |     |
| ○ U形矢板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>□ 鋼矢板(U形・Z形) 鋼矢板                 | <b>〔(ハット形)─</b> 」「鋼管矢板     | Į          |     |
| ○ Z形矢板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O SYW295 O SY                         | N295 O SKY4                | 00         |     |
| ○ ハット形矢板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O SYW390 O SY                         | N390 O SKY4                | 90         |     |
| ● 矢板任意指定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OSM                                   | N430                       |            |     |
| ○ 鋼管矢板指定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                            |            |     |
| ※ ここで設定する矢板は、土留め矢板の機能のみを有しています                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 矢板諸元                                  |                            |            |     |
| 山形矢板形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 許容応力度の常時                              | (N/mm <sup>2</sup> ) 0.0   | ×1         |     |
| 01型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 地震時                                   | (N/mm <sup>2</sup> ) 0.0   | ×1         |     |
| <ul> <li>○ </li> <li>○ </li> <li>● </li> <li< th=""><th>降伏応力度</th><th>(N/mm²) 0.0</th><th><b>%</b>1</th><th></th></li<></ul> | 降伏応力度                                 | (N/mm²) 0.0                | <b>%</b> 1 |     |
| ○ <u>」</u><br>○ 広幅型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ヤング係数                                 | (kN/mm²) 0.0               | <b>%</b> 2 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ※1.「00」を設定した場合、タ<br>※2.「00」を設定した場合、2  | ≂板の材質によって値が設う<br>00が設定されます | 定されます      |     |

[矢板形式]

矢板の形式などを入力します。本システムでは、内部に矢板データを保持していま すので複数の矢板データでトライアル計算することが可能となっています。[U形 矢板形式]は、[矢板形式]で「U形矢板」を指定した場合のみ有効です。

(U形矢板) U形矢板のみを計算対象とします。

- (Z形矢板) Z形矢板のみを計算対象とします。
- (ハット形矢板) ハット形矢板のみを計算対象とします。
- (矢板任意指定)後述する「矢板任意指定」の画面で使用する矢板選択します。
- (鋼管矢板指定)後述する「鋼管矢板指定」の画面で使用する鋼管矢板を入力し ます。

## [U形矢板形式]

- [矢板形式]で「U形矢板」を指定した場合にU形矢板の形式を指定します。
- (L型) U形矢板の添え字がついている矢板のみを計算対象とします。
- (普通型) U形矢板のL型・広幅型以外の矢板を計算対象とします。
- (広幅型) 幅の広いタイプのU形矢板を計算対象とします。

### [矢板の材質]

鋼矢板(U形・Z形/ハット形)、鋼管矢板の材質を指定します。

※SYW430の許容応力度は、2018年8月現在基準書等には明示されていませんが、以下の文献から、本システムでは降伏応力度の60%として計算し、安全側に丸めることで、次のように算出しています。

SYW430の許容応力度=430.0×0.6=258≒255 N/mm<sup>2</sup> 参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.317 2.3.2(2)

#### [矢板諸元-許容応力度]

矢板の許容応力度を入力します。0.0を入力すれば指定した矢板の許容応力度を採 用します。この値は設計基準で「許容応力度法(漁港基準)」「港湾基準(H11)」を 指定した場合に使用します。

### [矢板諸元-降伏応力度]

矢板の降伏応力度を入力します。0.0を入力すれば指定した矢板の降伏応力度を採 用します。この値は設計基準で「港湾基準(H30)」を指定した場合に使用します。

### [矢板諸元-ヤング係数]

使用する矢板のヤング係数を入力します。入力値が0.0の場合、以下の値を採用します。

鋼矢板・鋼管矢板 : E = 200kN/mm<sup>2</sup>

# 第2タブ(矢板任意指定)

| 📊 棚式係船岸5 Ver2.1.2 - サンプル:     | データ_H30港湾基準          |               |                |                        | -                |     |
|-------------------------------|----------------------|---------------|----------------|------------------------|------------------|-----|
| ファイル(E) データ入力(I) 設定( <u>I</u> | E) 計算( <u>C</u> ) ヘル | プ( <u>H</u> ) |                |                        |                  |     |
| D 🛩 🖬 📃 🎒 💡                   |                      |               |                |                        |                  |     |
| 個 國 開 基本条件計算条件 上部             | 工 前面矢板               | ▶<br>タイ材 杭寸法  | ■ ■<br>腐食 土質条件 | ▶                      | □ ■<br>限界状態 模式図  |     |
| 矢板条件                          | 矢板任意                 | 指定            |                |                        |                  |     |
| 選択                            | 矢板名称                 | 矢板形式          | 矢板の幅<br>(mm)   | 断面二次モーメント<br>I (cm4/m) | 断面係数<br>Z(cm3/m) | くルプ |
| OSP-I                         |                      | し形            | 400            | 8740                   | 874              |     |
|                               | (NOF III 1277)       | し形            | 400            | 38800                  | 2270             |     |
| OSP-V                         | Ľ                    | し形            | 500            | 63000                  | 3150             |     |
| OSP-VI                        | ĨĹ                   | U<br>U<br>形   | 500            | 86000                  | 3820             |     |
| OSP-Z                         | 25                   | Z形            | 400            | 38300                  | 2510             |     |
| OSP-Z                         | 32                   | Z形            | 400            | 55000                  | 3200             |     |
| O S P-Z                       | 38                   | 乙形            | 400            | 69200                  | 3800             |     |
| USP-Z                         | . 45                 | 二形            | 400            | 83500                  | 4550             |     |
|                               | т<br>Ш               | し形            | 000            | 13000                  | 1900             |     |
|                               | . W                  | 口形            | 600            | 56700                  | 2700             |     |
| OSP-10                        | лн                   | ハット形          | 900            | 10500                  | 902              |     |
| □ S P-25                      | бН                   | ハット形          | 900            | 24400                  | 1610             |     |
| 🗍 S P-45                      | бн                   | ハット形          | 900            | 45000                  | 2450             |     |
| 🗆 S P-50                      | )н                   | ハット形          | 900            | 51100                  | 2760             |     |
| OSP-I                         | A                    | し形            | 400            | 4500                   | 529              |     |
| SP-I                          | A                    | し形            | 400            | 10600                  | 880              |     |
|                               | . A<br>. A           | し形            | 400            | 22800                  | 1520             |     |
|                               | н<br>(иср.ш.)        | し形            | 400            | 41000                  | 12/0             |     |
| USF m<br>Nysp-                | ·U5                  | し形            | 400            | 4220                   | 527              |     |
| ΠYSP-                         | ·Ū9                  | U<br>形        | 400            | 9680                   | 880              |     |
| OYSP-                         | · U 15               | -<br>U形       | 400            | 22800                  | 1520             |     |
| ÖYSP-                         | · U 23               | ∪形            | 400            | 39400                  | 2250             |     |
| OYSP-                         | - I                  | し形            | 400            | 3820                   | 509              |     |
| OYSP-                         | - II                 | し形            | 400            | 8690                   | 869              |     |
| 追加失板(a                        | ま矢板形式に「*」フ           | が記載されています     |                |                        |                  |     |
|                               |                      |               |                |                        |                  |     |

[**矢板形式**]が「矢板任意指定」の場合、矢板データの一覧表から検討対象の矢板 を選択します。

この一覧表には、既存鋼矢板データと【設定】メニューの【任意矢板の追加】で入 力した追加矢板データが表示されています。

トライアル計算を行う順番は、指定した順ではなく指定した複数の矢板データの 中で断面が小さいものから計算していきます。

#### [任意矢板データの追加]

本システムは、内部に鋼矢板データを保持していますが、これら以外の矢板データ を使用する場合、任意の矢板データを追加し検討することができます。

メニューにあります【設定】-【任意矢板の追加】の順でクリックします。

| 📊 棚式係船岸5 Ver2.1.2 - サ | ンプルデータ_H30港湾基準                |                        |    |                |                       |          | -                     | × |
|-----------------------|-------------------------------|------------------------|----|----------------|-----------------------|----------|-----------------------|---|
| ファイル(F) データ入力(I)      | 設定(E) 計算(C) ヘルプ(H)            |                        |    |                |                       |          |                       |   |
| i D 🛩 🖬 📃 🎒 💡         | 任意矢板の追加(A)                    |                        |    |                |                       |          |                       |   |
| □□                    | 任意腹起こし材の追加(H)<br>上部工 前面矢板 タイ材 | <mark>↓↓</mark><br>杭寸法 | 腐食 | ▲<br>土質条件 任意土圧 | <mark>約</mark><br>他外力 | <br>限界状態 | <mark>感</mark><br>模式図 |   |
| 矢板条件                  | 矢板任意指定                        |                        |    |                |                       |          |                       |   |

「鋼矢板データの追加」ダイアログが表示されますので、矢板データの追加を行い ます。すべての作業が終了すればOKボタンをクリックします。追加矢板データを 保存し、元の画面に戻ります。作業中の追加矢板データを破棄するのであれば、キ ャンセルボタンをクリックします。

|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      | 1 |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| No                                                                                                              | 矢板名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 矢板形式                                                                                                                                                                                                                                                                                                                                                                                                                                  | 町田二次<br>モーメント<br>(cm4/m)                                                                                                                     | 断面係数<br>(cm3/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 矢板の幅<br>(mm)                                                                                                                  | 断面積<br>(cm2/m)                                                                                                                                                                                                                                       |   |
| 1 s                                                                                                             | ample1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U形矢板                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15000                                                                                                                                        | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                                                                           | 300.0                                                                                                                                                                                                                                                |   |
| 2 s                                                                                                             | ample2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ハット形矢板                                                                                                                                                                                                                                                                                                                                                                                                                                | 35000                                                                                                                                        | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900                                                                                                                           | 450.0                                                                                                                                                                                                                                                |   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       | データを追                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      |   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      |   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОК                                                                                                                            | キャンセル                                                                                                                                                                                                                                                | I |
| 明式係船.                                                                                                           | 岸5 Ver2.1.2 - サンブルデータ_H30港湾基準                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               | _                                                                                                                                                                                                                                                    |   |
| (JV(E)                                                                                                          | データ入力(!) 設定(E) 計算(C) ヘル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | レプ( <u>H</u> )                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      |   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      |   |
| 11余4<br>ケ                                                                                                       | 訂昇条件 上部上 則面大板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ダイ 14 11、1                                                                                                                                                                                                                                                                                                                                                                                                                            | 王 貝 弁                                                                                                                                        | ミ汁 仕息土圧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 他外刀 限界状                                                                                                                       | 悲 惧式凶                                                                                                                                                                                                                                                |   |
| the second se | セクル 生物任音                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 746¢                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                      |   |
| ~                                                                                                               | ·板条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 指定                                                                                                                                                                                                                                                                                                                                                                                                                                    | 日本の幅                                                                                                                                         | 断面二次王。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               | i係数                                                                                                                                                                                                                                                  | Δ |
| ~                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3指定<br>矢板形式                                                                                                                                                                                                                                                                                                                                                                                                                           | ∈板の幅<br>(mm)<br>400                                                                                                                          | 断面二次モ~<br>I(cm4/m<br>38300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -メント 断面<br>) Z(ci                                                                                                             | j係数<br>m3/m)<br>2510                                                                                                                                                                                                                                 | ^ |
| ~                                                                                                               | 法板条件 矢板任意<br>選 矢板名称<br>択 SP-Z25<br>□ SP-Z32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 活定<br>矢板形式<br>乙形<br>乙形<br>乙形                                                                                                                                                                                                                                                                                                                                                                                                          | €板の幅<br>(mm)<br>400<br>400                                                                                                                   | 断面二次モ~<br>I(cm4/m<br>38301<br>55001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -メント 断面<br>) Z(ci<br>]                                                                                                        | i係数<br>m3/m)<br>2510<br>3200                                                                                                                                                                                                                         | ^ |
| ~                                                                                                               | ·<br>液条件<br>(<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 指定<br>矢板形式<br>乙形<br>乙形<br>乙形<br>乙形<br>乙形<br>乙形<br>乙形                                                                                                                                                                                                                                                                                                                                                                                  | €板の幅<br>(mm)<br>400<br>400<br>0Kボタン                                                                                                          | 断面二次モ~<br>I (cm4/m<br>38301<br>55001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -メント 断面<br>) Z(ci<br>D<br>つ                                                                                                   | i係数<br>m3/m)<br>2510<br>3200                                                                                                                                                                                                                         | ^ |
| ~                                                                                                               | :板条件 矢板任意<br>援 矢板名称<br>○ SP-Z25<br>○ SP-Z32<br>○ SP-Z38<br>○ SP-Z45<br>○ SP-Z45<br>○ SP-TI♥<br>○ SP-TI♥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 指定<br>矢板形式<br>Z 形<br>Z 形<br>Z 形<br>Z 形<br>Z 形<br>U 形<br>U 形                                                                                                                                                                                                                                                                                                                                                                           | <sub>5板の幅</sub><br>(mm)<br>400<br>400<br>400<br>0Kボタン                                                                                        | 断面二次モ-<br>I(cm4/m<br>38300<br>55000<br>シクリック                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -メント 断面<br>) Z(ci<br>)<br>で<br>/-                                                                                             | i係数<br>m3/m)<br>2510<br>3200                                                                                                                                                                                                                         |   |
| ~                                                                                                               | 読条件 矢板任意<br>選 矢板名称<br>(○ S P - Z 25<br>○ S P - Z 32<br>○ S P - Z 32<br>○ S P - Z 38<br>○ S P - Z 45<br>○ S P - I W<br>○ S P - II W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3指定<br>矢板形式<br>乙形<br>乙形<br>乙形<br>乙形<br>U形<br>U形<br>UN<br>いい<br>ト<br>T<br>フ<br>T<br>C<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                 | <sup>5板の幅</sup><br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板伯<br>矢板デー                                                                        | <sup>新面二次モ・<br/>I(cm4/m<br/>38300<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>55000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>5000<br/>50000<br/>5000<br/>5000<br/>5000<br/>5000<br/>50000<br/>5000<br/>50000<br/>5000000</sup> | -メント 断面<br>0<br>0<br>で<br>に<br>されます                                                                                           | 5係数<br>m37m)<br>2510<br>3200                                                                                                                                                                                                                         |   |
| ~                                                                                                               | 読条件 矢板任意<br>課 矢板名称<br>○ SP-Z25<br>○ SP-Z32<br>○ SP-Z38<br>○ SP-Z45<br>○ SP-IW<br>○ SP-IW<br>○ SP-IW<br>○ SP-IW<br>○ SP-IW<br>○ SP-IW<br>○ SP-IW<br>○ SP-IOH<br>○ SP-25H<br>○ SP-25H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 指定                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>5.板の幅</sup><br>(mm)<br>400<br>400<br>0Kボタン<br>「矢板日<br>矢板デー                                                                              | <sup>断面二次モ・<br/>I(cm4/m<br/>38300<br/>55000<br/>シクリック<br/>E意指定」<br/>-タが追加</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -メント 斯面<br>)<br>つ<br>で<br>に<br>されます。                                                                                          | )係数<br>m3/m)<br>2510<br>3200<br>                                                                                                                                                                                                                     |   |
|                                                                                                                 | 読条件 矢板任意<br>選 矢板名称<br>○ S P - Z 25<br>○ S P - Z 32<br>○ S P - Z 32<br>○ S P - Z 38<br>○ S P - Z 45<br>○ S P - I W<br>○ S P - 10 H<br>○ S P - 25 H<br>○ S P - 45 H<br>○ S P - 50 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3指定<br>矢板形式<br>Z 板形<br>Z R形<br>Z R形<br>Z R形<br>U D N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                 | <sub>5板の幅</sub><br>(mm)<br>400<br>400<br>400<br>500<br>500<br>900<br>900                                                                     | <sup>断面二次モ・<br/>I(cm4/m<br/>38300<br/>55000<br/>55000<br/>55000<br/>55000<br/>5000<br/>51000<br/>51100</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -メント 斯面<br>)<br>で<br>に<br>されます。                                                                                               | 2510<br>3200<br>2250<br>2000<br>2000<br>2000<br>2250<br>2450<br>2760                                                                                                                                                                                 |   |
| ~                                                                                                               | 読条件 矢板任意<br>援 矢板名称<br>S P - Z 25<br>S P - Z 32<br>S P - Z 32<br>S P - Z 38<br>S P - Z 45<br>S P - I W<br>S P - I W<br>S P - I W<br>S P - 10H<br>S P - 25H<br>S P - 45H<br>S P - 50H<br>S P - I A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3指定<br>矢板 形式<br>Z 石 形形<br>Z Z 形<br>Z Z 形<br>U U U N N ッッ<br>N N 形<br>N ト<br>F<br>T<br>N N N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                          | <sup>5.板の幅</sup><br>400<br>400<br>400<br>0Kボタン<br>「矢板子<br>矢板デー<br>900<br>400<br>400                                                          | <sup>断面二次モ・</sup><br>I(cm4/m<br>38300<br>55000<br>55000<br>55000<br>55000<br>たのリック<br>E意指定」<br>-タが追加<br>51100<br>51100<br>45001<br>51100<br>10600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <sup>パント 斯面<br/>2 (c)<br/>で<br/>に<br/>されます。</sup>                                                                           | i係数<br>m3/m)<br>2510<br>3200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>20                                                                                                                                                                   |   |
|                                                                                                                 | 読条件 矢板任意<br>選 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-10H<br>SP-25H<br>SP-45H<br>SP-50H<br>SP-50H<br>SP-1A<br>SP-IA<br>SP-IA<br>SP-IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3指定<br>矢板 形<br>Z 石<br>Z Z U U U U N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                         | <sup>5.板の幅</sup><br>400<br>400<br>0Kボタン<br>「矢板子<br>矢板デー<br>900<br>900<br>400<br>400<br>400                                                   | 新面二次モー<br>I(cm4/m<br>38300<br>55000<br>55000<br>55000<br>55000<br>55000<br>55000<br>55100<br>51100<br>45000<br>51100<br>45000<br>51100<br>45000<br>51100<br>45000<br>51100<br>45000<br>51100<br>22800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -メント 斯面<br>フ<br>で<br>に<br>されます。                                                                                               | i係数<br>m3/m)<br>2510<br>3200<br>2250<br>2250<br>2760<br>2760<br>529<br>880<br>1520                                                                                                                                                                   | ^ |
|                                                                                                                 | 読条件 矢板任意<br>課 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-I0H<br>SP-25H<br>SP-25H<br>SP-25H<br>SP-50H<br>SP-50H<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3指定<br>矢板形式<br>Z Z 板形式<br>Z Z T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                     | tmの幅<br>(mm)<br>400<br>400<br>0Kボタン<br>「矢板行<br>矢板デー<br>900<br>900<br>400<br>400<br>400<br>400                                                | 新面二次モー<br>I(cm4/m<br>38300<br>55000<br>55000<br>55000<br>55000<br>55000<br>55000<br>55000<br>45000<br>551000<br>45000<br>551000<br>45000<br>45000<br>45000<br>51100<br>45000<br>45000<br>10600<br>22800<br>41600<br>17400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | パント 斯面<br>フロ<br>で<br>に<br>されます。                                                                                               | i係数<br>3200<br>3200<br>2450<br>2450<br>2760<br>529<br>880<br>1520<br>2250<br>1340                                                                                                                                                                    |   |
|                                                                                                                 | 読条件 矢板任意<br>提 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-10H<br>SP-25H<br>SP-25H<br>SP-25H<br>SP-25H<br>SP-25H<br>SP-1A<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 指定<br>矢板 式<br>Z Z 板形 形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形                                                                                                                                                                                                                                                                                                                                                                                 | twの幅<br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板行<br>矢板デー<br>900<br>400<br>400<br>400<br>400<br>400<br>400                                  | 新面二次モー<br>I(cm4/m<br>38300<br>55000<br>55000<br>55000<br>55000<br>55000<br>55100<br>45000<br>51100<br>45000<br>51100<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>45000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>41000<br>410000<br>410000<br>4100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>メント 断面<br/>) Z (G<br/>つ<br/>つ<br/>で<br/>こ<br/>されます。</sup>                                                                | i (K &<br>m3/m)<br>2510<br>3200<br>2000<br>2000<br>2000<br>2000<br>2529<br>880<br>1520<br>2250<br>1520<br>2250<br>1340<br>527                                                                                                                        | ~ |
|                                                                                                                 | 読条件 矢板任意<br>課 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-T0H<br>SP-25H<br>SP-45H<br>SP-45H<br>SP-1A<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-U5<br>SP-U5<br>YSP-U15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 午板          午板          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ          こ | <sup>5板の幅</sup><br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板デー<br>矢板デー<br>900<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400 | 断面二次モ-<br>I(cm4/m<br>38300<br>55000<br>シクリック<br>E意指定」<br>-タが追加<br>45000<br>10600<br>22800<br>41600<br>17400<br>17400<br>422800<br>22800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -メント<br>)<br>で<br>に<br>されます。<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                 | 3係数<br>m3/m)<br>2510<br>3200<br>2250<br>2760<br>529<br>880<br>1520<br>2250<br>1340<br>527<br>880<br>1520                                                                                                                                             | ^ |
|                                                                                                                 | 読条件 矢板任意<br>課 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-10H<br>SP-25H<br>SP-25H<br>SP-1A<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-U9<br>SP-U9<br>YSP-U9<br>YSP-U23<br>YSP-U23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 指定<br>失板 ボ<br>Z Z Z Z U U U N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                 | 、<br>板の幅<br>400<br>400<br>400<br>400<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                        | 断面二次モ・<br>I(cm4/m<br>38300<br>55000<br>たクリック<br>E意指定」<br>-タが追加<br>51100<br>45001<br>51100<br>45001<br>10600<br>22800<br>41800<br>17400<br>41800<br>17400<br>22800<br>38400<br>38400<br>38400<br>38400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -メント<br>ア<br>で<br>に<br>されます。                                                                                                  | 3係数<br>m3/m)<br>2510<br>3200<br>2250<br>2760<br>529<br>880<br>1520<br>2250<br>1340<br>527<br>880<br>1520<br>2250<br>1340<br>527<br>880<br>1520<br>2250                                                                                               |   |
| ~                                                                                                               | 読条件 矢板任意<br>選 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-IW<br>SP-I0H<br>SP-25H<br>SP-50H<br>SP-50H<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-IA<br>SP-U9<br>SP-U9<br>YSP-U9<br>YSP-U9<br>YSP-U15<br>YSP-I<br>YSP-I<br>SP-I<br>YSP-I<br>SP-I<br>SP-I<br>SP-I<br>SP-I<br>SP-I<br>SP-I<br>SP-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 指定     大板     スマンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ                                                                                                                                                                                                                                                                                                                                                                                | 、<br>(mm)<br>400<br>400<br>400<br>400<br>500<br>900<br>400<br>400<br>400<br>400<br>400<br>400<br>4                                           | 断画二次モ・<br>I(cm4/m<br>38300<br>55000<br>ケクリック<br>たま指定」<br>-タが追加<br>45000<br>51100<br>10600<br>22800<br>41800<br>17400<br>4500<br>10600<br>22800<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38400<br>38500<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>38000<br>380000<br>380000<br>380000<br>380000<br>380000<br>380000<br>3800000000<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -メント<br>フ<br>で<br>に<br>されます。<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                 | 3係数<br>m3/m)<br>2510<br>3200<br>2250<br>2760<br>529<br>880<br>1520<br>2250<br>1340<br>527<br>880<br>1520<br>2250<br>1520<br>2250<br>509<br>869                                                                                                       |   |
|                                                                                                                 | 読条件 矢板任意<br>選 矢板名称<br>SP-Z25<br>SP-Z32<br>SP-Z32<br>SP-Z38<br>SP-Z45<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-TW<br>SP-T0H<br>SP-25H<br>SP-50H<br>SP-1A<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-TA<br>SP-U9<br>YSP-U9<br>YSP-U9<br>YSP-U9<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3<br>YSP-U3 | 指定<br>大板<br>ズ Z Z Z Z U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                   | tmm<br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板デー<br>900<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400                     | 断画二次モ・<br>I (cm4/m<br>38300<br>55000<br>ケクリック<br>たま指定」<br>-タが追加<br>45000<br>51100<br>10600<br>22800<br>41600<br>17400<br>17400<br>17400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>3940000<br>394000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -メント<br>ブント<br>で<br>に<br>されます。                                                                                                | 3<br>小<br>次<br>第<br>3<br>2<br>5<br>1<br>3<br>2<br>5<br>2<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                       |   |
|                                                                                                                 | : 被条件 矢板任意<br>選 矢板名称<br>SP-Z 25<br>SP-Z 32<br>SP-Z 32<br>SP-Z 38<br>SP-Z 45<br>SP-I W<br>SP-I W<br>SP-I W<br>SP-10H<br>SP-25H<br>SP-25H<br>SP-45H<br>SP-45H<br>SP-45H<br>SP-45H<br>SP-1A<br>SP-I A<br>SP-I A<br>SP-I A<br>SP-IIA<br>SP-IIA<br>SP-IIA<br>SP-IIA<br>SP-U5<br>YSP-U5<br>YSP-U5<br>YSP-U5<br>YSP-U8<br>YSP-U8<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-I<br>YSP-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 指定<br>矢板ZZZUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU                                                                                                                                                                                                                                                                                                                                                                                         | tmm<br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板デー<br>900<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400                     | 断面二次モ・<br>I(cm4/m<br>38300<br>55000<br>クリック<br>たる指定」<br>-タが追加<br>45000<br>51100<br>10600<br>22800<br>41600<br>17400<br>41600<br>17400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>39400<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>394000<br>3940000<br>3940000<br>394000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -メント<br>アント<br>で<br>に<br>されます。<br>り<br>り<br>り<br>り<br>り<br>り                                                                  | i係数<br>m3/m)<br>2510<br>3200<br>2250<br>2760<br>529<br>880<br>1520<br>2250<br>1340<br>527<br>880<br>1520<br>2250<br>1520<br>2527<br>880<br>1520<br>2559<br>880<br>1520<br>2559<br>559<br>869<br>1310<br>2060<br>3150                                 |   |
|                                                                                                                 | 読条件 矢板任意<br>選 矢板名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 指定<br>矢板ZZZZUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU                                                                                                                                                                                                                                                                                                                                                                                         | tmm<br>(mm)<br>400<br>400<br>400<br>0Kボタン<br>「矢板デー<br>900<br>900<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400                     | 断面二次モ・<br>I(cm4/m<br>38300<br>55000<br>ククリック<br>E意指定」<br>-タが追加<br>45000<br>51100<br>10600<br>22800<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>41600<br>17400<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>18900<br>19900<br>18900<br>18900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19900<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>100000<br>100000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -メント<br>ブント<br>で<br>て<br>されます。<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | i係数<br>m3/m)<br>2510<br>3200<br>2250<br>2760<br>2760<br>2760<br>2760<br>2250<br>1520<br>2250<br>1520<br>2250<br>1520<br>2250<br>527<br>880<br>1520<br>2250<br>527<br>880<br>1520<br>2250<br>509<br>869<br>1310<br>2250<br>509<br>869<br>1310<br>2000 |   |

# <u>第2タブ(鋼管矢板指定)</u>

| 📊 棚式係船岸            | 5 Ver2.1.2                            | - サンプルデータ         | 7_H30港湾基準         |                |                 |    |      |                     |                          |                 | _                     |   | ×   |
|--------------------|---------------------------------------|-------------------|-------------------|----------------|-----------------|----|------|---------------------|--------------------------|-----------------|-----------------------|---|-----|
| ファイル( <u>F</u> ) デ | -タ入力(!)                               | 設定( <u>E</u> )    | 計算( <u>C</u> ) へJ | レプ( <u>H</u> ) |                 |    |      |                     |                          |                 |                       |   |     |
| i 🗅 😅 🔛 🛽          | 🧕 🖨 📋                                 | ?                 |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
| □□<br>基本条件 言       | ///////////////////////////////////// | ┣ <b>冊</b><br>上部工 | 前面矢板              | タイ材            | <b>山</b><br>杭寸法 | 腐食 | 土質条( | ₽<br>牛 任意土日         | E 他外力                    | □<br>限界状態       | <mark>展</mark><br>模式図 |   |     |
| 矢板                 | ī条件                                   |                   | 鋼管矢机              | 前定             |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       | ^ | לאו |
|                    | No                                    | 外径<br>(mm)        | 厚さ<br>(mm)        |                | 矢板の             | 継手 |      | 継手の<br>有効間隔<br>(mm) | 断面二次<br>モーメント<br>(cm4/m) | 断面係数<br>(cm3/m) | 断面積<br>(cm2/m)        |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |
|                    |                                       |                   |                   |                |                 |    |      |                     |                          |                 |                       |   |     |

[矢板形式]が「鋼管矢板指定」の場合、鋼管矢板の諸元を入力します。 矢板の継手の種類は次の通りとなります

- ・二港湾型(L-T型)[L-T65×65×8]
- ・二港湾型(L-T型)[L-T75×75×9]
- ・二港湾型(L-T型)[L-T100×75×10]
- ・パイプ型(P-T型)[φ165.2×t9.0]
- ・パイプ型(P-P型)[φ165.2×t11.0]
- ・継手有効間隔入力

※「継手有効間隔入力」を選択した場合に、継手の有効間隔の直接入力が可能です。

腐食前の断面性能でカタログ値を使用する場合は、断面二次モーメント・断面係 数・断面積を入力します。省略した場合、内部で計算します。 トライアル計算を行う順番は、指定した順で計算していきます。 計算に使用するタイ材及び、腹起こし材を指定します。タイ材の設定画面は、2タブ (タイ材、腹起こし材)の構成となります。

<u>第1タブ (タイ材)</u>

| <ul> <li>欄 棚式係船岸5 Ver2.1.2 - サンブルデータ_H30港湾基準</li> <li>ファイル(E) データ入力(I) 設定(E) 計算(C) ヘルプ(</li> <li>□ (二) 口(二) (二) (二) (二) (二) (二) (二) (二) (二) (二)</li></ul> | <u>H</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                         | – o x                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-----------------------|
| □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□                                                                                                                     | ▲ 通<br>以付材 杭寸法 腐食                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ▲<br>土質条件 任意土圧                | ☆  つ   他外力 限界状態 模       | <mark>鼎</mark><br>(式図 |
|                                                                                                                                                           | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                         | o IL-P                |
| タイ材<br>種類<br>・ タイロッド<br>・ タイブル<br>・ タイケーブル<br>・ タイロープ<br>タイロッド種別<br>・ SS400<br>・ SS490<br>・ 高張力鋼490<br>・ 高張力鋼590<br>・ 高張力鋼740<br>タイ材の負担幅(m) 3,20          | タイロッド<br>選択<br>全<br>違択<br>マ<br>全<br>違択<br>マ<br>ク<br>25<br>マ<br>ク<br>25<br>マ<br>ク<br>28<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>38<br>マ<br>ク<br>44<br>マ<br>ク<br>55<br>マ<br>ク<br>44<br>マ<br>ク<br>55<br>マ<br>ク<br>48<br>マ<br>ク<br>44<br>マ<br>55<br>マ<br>ク<br>55<br>マ<br>ク<br>60<br>マ<br>ク<br>55<br>マ<br>ク<br>55<br>マ<br>ク<br>60<br>マ<br>ク<br>55<br>マ<br>ク<br>60<br>マ<br>ク<br>55<br>マ<br>ク<br>60<br>マ<br>ク<br>55<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>ク<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>マ<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 |                               |                         |                       |
|                                                                                                                                                           | <ul> <li>φ 85</li> <li>φ 90</li> <li>φ 100</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 照査用特性値<br>〇 降伏点荷重<br>〇 みなし降伏点 | Tys<br>荷重 Tyk (2022年以前) |                       |

#### [種類]

計算に使用するタイ材の種類を「タイロッド」「タイブル」「タイケーブル」「タ イロープ」から指定します。

#### [タイロッド種別]

タイ材の種類が「タイロッド」の場合、種別を「SS400」「SS490」「高張力鋼490」 「高張力鋼590」「高張力鋼690」「高張力鋼740」から指定します。

### [タイ材負担幅]

1本のタイ材が受け持つ幅を入力します。

#### [照査用特性值] ※港湾基準(H30)

タイ材がタイロッド以外を選択した場合に有効となります。照査に用いる特性値 に「降伏点荷重」か、「みなし降伏点荷重」かを選択できます。2022年以前では、 後者を標準として用いていました。現在は前者が標準となっています。

# [タイ材の選択]

タイ材の[種類]で選択したタイ材を表示します。検討する項目を指定します。 検討については、必ず1つ以上選択して下さい

※ 腹起こし材については、検討する材料を画面で選択します。全ての材料が選択 されている状態で全選択のチェックをはずすと全解除となります。必ず1つ以 上選択して下さい。

# <u>第2タブ(腹起こし材)</u>

| 齫棚    | 式係船岸5 Ve           | r2.1.2 - サンプル  | ,データ_H30港湾書        | 5準              |                 |         |                |              |           | -                     |            | ×  |
|-------|--------------------|----------------|--------------------|-----------------|-----------------|---------|----------------|--------------|-----------|-----------------------|------------|----|
| ファイ   | ル( <u>F</u> ) データフ | 入力(1) 設定(      | (E) 計算( <u>C</u> ) | ヘルプ( <u>H</u> ) |                 |         |                |              |           |                       |            |    |
| i 🗅 🛛 | ê 🔚   🧕 é          | <b>3</b>   ?   |                    |                 |                 |         |                |              |           |                       |            |    |
| 基本    | ■                  | 国 🔚 🐂          | コンジェ 前面矢相          | 版 タイ材           | <b>↓</b><br>杭寸法 | 属食      | ▲<br>主質条件 任:   | ▶▶           | □<br>限界状態 | <mark>展</mark><br>模式図 |            |    |
|       | タイ材                |                | 腹走                 | 己し材             |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            | ມສ |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       | - 腹起こしや<br>  選択    | f H            | В                  | t1              | t2              | Ι       | Z              | 錮材           | 溝形鋼の      | 場合<br>あけまわさ           | わている       | 75 |
|       |                    |                | 全選                 | 択               |                 |         |                |              | 2倍した値     | を用います                 | li C G Yav | ~~ |
|       |                    | 75.0           | 40.0               | 5.0             | 7.0             | 75.3    | 20.1           | 溝形鋼          | 日形綱の「     | 湯合(追加]                | 息記こし       | 材) |
|       |                    | 125.0          | 50.0<br>65.0       | 5.U<br>6.0      | 7.5<br>8.0      | 424.0   | 37.0<br>67.8   | 海形鋼 溝形鋼      | 応力照査      | では表記さ                 | れている       | Żě |
|       |                    | 150.0          | 75.0               | 6.5             | 10.0            | 861.0   | 115.0          | 溝形鋼          | そのまま用     | いまり                   |            |    |
|       |                    | 150.0          | 75.0<br>75.0       | 9.0             | 12.5            | 1050.0  | 140.0          | 溝形鋼<br>湛形鋼   |           |                       |            |    |
|       |                    | 200.0          | 80.0               | 7.5             | 11.0            | 1950.0  | 195.0          | 溝形鋼          |           |                       |            |    |
|       |                    | 200.0          | 90.0               | 8.0             | 13.5            | 2490.0  | 249.0          | 溝形鋼          |           |                       |            |    |
|       |                    | 250.0          | 90.0<br>00 0       | 9.0             | 13.0            | 4180.0  | 334.0          | 溝形鍋<br>湛形鋼   |           |                       |            |    |
|       | Ĕ                  | 300.0          | 90.0<br>90.0       | 9.0             | 13.0            | 4080.0  | 429.0          | 溝形綱          |           |                       |            |    |
|       |                    | 300.0          | 90.0               | 10.0            | 15.5            | 7410.0  | 494.0          | 溝形鋼          |           |                       |            |    |
|       |                    | 300.0          | 90.0               | 12.0            | 16.0            | 7870.0  | 525.0          | 溝形鋼          |           |                       |            |    |
|       |                    | 380.0<br>380.0 | 100.0              | 10.5            | 16.5            | 14500.0 | 763.0<br>823.0 | ) 角形鋼<br>満形鋼 |           |                       |            |    |
|       |                    | 380.0          | 100.0              | 13.0            | 20.0            | 17600.0 | 926.0          | 溝形鋼          |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            |    |
|       |                    |                |                    |                 |                 |         |                |              |           |                       |            | .: |

検討する腹起こし材を選択します。

既存データは全て『溝形鋼』となり、【設定】—【任意腹起こし材の追加】で設定 した腹起こし材は『H形鋼』となります。トライアル計算では、指定した複数の腹 起こし材の中で、腐食前の断面が小さいものから計算します。 検討については必ず1つ以上選択して下さい。

腹起こし材の一覧表は既存腹起こし材(溝型鋼)とメニューの【任意腹起こし材の 追加】で入力した追加腹起こし材(H形鋼)が表示されています。

※ 腹起こし材については、検討する材料を画面で選択します。全ての材料が選択 されている状態で全選択のチェックをはずすと全解除となります。必ず1つ以 上選択して下さい。

### [任意腹起こし材データの追加]

本システムは、内部に腹起こし材データを保持していますが、これら以外の腹起こ し材データを使用する場合、任意の腹起こし材データを追加し検討することがで きます。

メニューにあります【設定】-【任意腹起こし材の追加】の順でクリックします。

| 📊 棚式係船岸5 Ver2.1.2 - | サンプルデータ_H30港湾基準                              |         |    |                                                                                                                                                                                                 |                          |                       |          | -                     | × |
|---------------------|----------------------------------------------|---------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|----------|-----------------------|---|
| ファイル(E) データ入力(J)    | 設定( <u>E)</u> 計算( <u>C</u> ) ヘルプ( <u>H</u> ) |         |    |                                                                                                                                                                                                 |                          |                       |          |                       |   |
| D 🛩 🖬 📃 🚑 I 🕈       | 任意矢板の追加( <u>A</u> )                          |         |    |                                                                                                                                                                                                 |                          |                       |          |                       |   |
| 個                   | 任意腹起こし材の追加( <u>H</u> )<br>上部工 前面矢板 タイ材       | <br>杭寸法 | 属食 | ▲<br>1<br>1<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>1<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二 | <mark>♪</mark> 】<br>任意土圧 | <mark>が</mark><br>他外力 | <br>限界状態 | <mark>展</mark><br>模式図 |   |
| タイ材                 | 腹起こし材                                        |         |    |                                                                                                                                                                                                 |                          |                       |          |                       |   |

「腹起こしデータの追加」ダイアログが表示されますので、腹起こしデータの追加 を行います。すべての作業が終了すればOKボタンをクリックします。追加腹起こ しデータを保存し、元の画面に戻ります。作業中の追加腹起こしデータを破棄する のであれば、キャンセルボタンをクリックします。



# <u>4-6. 杭寸法</u>

杭の諸元、計算条件、支持力条件、杭の形式などを指定します。 杭条件の設定画面は、4タブ(画面)の構成となります。画面切り替えはタブ(杭寸法、支 持力、杭頭部)の構成になります。

# <u> 第1タブ(杭寸法)</u>

| <b>in</b> # | 明式係船層          | 章5 Ver2.1.2 - サ)                      | ンプルデータ_H30           | 港湾基準                       |                 |            |             |             |                                       |             | _              |   | x  |
|-------------|----------------|---------------------------------------|----------------------|----------------------------|-----------------|------------|-------------|-------------|---------------------------------------|-------------|----------------|---|----|
| 771         | ′ル( <u>E</u> ) | データ入力(!)                              | 設定( <u>E</u> ) 計算    | ( <u>C</u> ) ヘルプ( <u>F</u> | <u>+</u> )      |            |             |             |                                       |             |                |   |    |
| D           | 差              | 🧕 🖨 🛛 💡                               |                      |                            |                 |            |             |             |                                       |             |                |   |    |
| 基本          | ∭<br>≤条件       | ///////////////////////////////////// | ┣ <b>冊</b><br>上部工 前さ | ■<br>面矢板 タ                 | ┃<br>イ材 杭       | ↓<br>寸法 腐食 | 土質条件        | ▶<br>↓ 任意土圧 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ि<br>艮界状態 ⇒ | 模式図            |   |    |
|             | 朾              | 讨法                                    |                      | 支持力                        |                 | 杭頭部        | ß           |             |                                       |             |                |   |    |
| ŝ           | 岡管杭            | (変位法で言                                | †算)                  |                            |                 |            |             |             |                                       |             |                |   | プ  |
|             | No             | 距離<br>(m)                             | 杭長<br>(m)            | 杭径<br>(mm)                 | 厚さ1<br>(mm)     | 材質1        | 厚さ2<br>(mm) | 材質2         | 杭厚さ<br>変化位置<br>(m)                    | 傾斜角<br>(度)  | 腐食速度<br>(mm/年) | ] |    |
|             | 1              | 1.05                                  | 15.00                | 500.0                      | 9.0             | SKK490     | 8.0         | SKK400      | 5.00                                  | 0.0         | 0.020          |   |    |
|             | 2              | 2.40                                  | 15.00                | 500.0                      | 9.0             | SKK490     | 8.0         | SKK400      | 5.00                                  | 0.0         | 0.020          | - |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                | - |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       | P1 P2                | P3                         | Pn              |            |             |             |                                       |             |                |   |    |
|             |                | Loo                                   |                      |                            | 1 month         |            |             |             |                                       |             |                |   |    |
|             |                | 御則面                                   |                      |                            |                 | E.         |             |             |                                       |             |                |   |    |
|             |                |                                       | 1.0                  | 12                         |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            | A Lake          |            |             |             |                                       |             |                |   |    |
|             |                | P1~Pn(                                | 2距離(11~              | <sub>てLn</sub> )は          | ARCH            | 2          |             |             |                                       |             |                |   |    |
|             |                | ++=(++                                | ノに指定す。<br>四度去れた。     | る<br>の=キャオ                 | - <u>_ 1頃</u> 計 |            |             |             |                                       |             |                |   |    |
|             |                | 1/17/14                               | 調整面から                | Maccy                      | 0               |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   |    |
|             |                |                                       |                      |                            |                 |            |             |             |                                       |             |                |   | .: |

設計基準の方法(仮想固定点法)を選択した場合、

・連結杭は考慮されません(鋼管杭)

・斜杭の考慮がされません(鋼管杭・H型鋼杭)

したがって、鋼管杭を選択した場合

「設計基準の方法(仮想固定点法)」と「変位法(有限長)」「変位法(無限長)」 では入力項目は次のようになります。

「設計基準の方法(仮想固定点法)」の場合

| 管杭  | (1)                  | 反想固定。                   | 気法で計算                                           | )                                                                                                            |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|----------------------|-------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No  |                      | 距離<br>(m)               | 杭長<br>(m)                                       | 杭径<br>(mm)                                                                                                   | 厚さ<br>(m)                                                                                                                  | 材質                                                                                                                                                                                                    | 腐食速度<br>(mm/年)                                                                                                                                                                                                | î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ▶ 1 |                      | 1.05                    | 15.00                                           | 1100.0                                                                                                       | 11.0                                                                                                                       | SKK 490                                                                                                                                                                                               | 0.000                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2   |                      | 2.40                    | 15.00                                           | 1100.0                                                                                                       | 11.0                                                                                                                       | SKK490                                                                                                                                                                                                | 0.000                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                      |                         |                                                 |                                                                                                              |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                      |                         |                                                 |                                                                                                              |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                      |                         |                                                 |                                                                                                              |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                      |                         |                                                 |                                                                                                              |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                      |                         |                                                 |                                                                                                              |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 管杭<br>No<br>▶ 1<br>2 | 管杭(1)<br>No<br>▶ 1<br>2 | 管杭 (仮想固定я<br>No 距離<br>(m)<br>▶ 1 1.05<br>2 2.40 | <ul> <li>管杭(仮想固定点法で計算</li> <li>No</li> <li>距離<br/>(m)</li> <li>1 1.05 15.00</li> <li>2 2.40 15.00</li> </ul> | <ul> <li>管杭(仮想固定点法で計算)</li> <li>No 距離 杭長 (m)</li> <li>1 1.05 15.00 1100.0</li> <li>2 2.40 15.00 1100.0</li> <li></li></ul> | <ul> <li>管杭(仮想固定点法で計算)</li> <li>No 距離 杭長 (m)</li> <li>1 1.05 15.00 1100.0 11.0</li> <li>2 2.40 15.00 1100.0 11.0</li> <li>4 100.0 11.0</li> <li>5 10 1100.0 11.0</li> <li>5 10 1100.0 11.0</li> </ul> | 管杭 (仮想固定点法で計算)       No     距離<br>(m)     杭長<br>(m)     杭径<br>(mm)     厚さ<br>(m)     材質       ▶ 1     1.05     15.00     1100.0     11.0     SKK490       2     2.40     15.00     1100.0     11.0     SKK490 | 管杭 (仮想固定点法で計算)       No     距離<br>(m)     杭長<br>(m)     杭径<br>(mm)     厚さ<br>(mm)     材質     腐食速度<br>(mm/年)       ▶ 1     1.05     15.00     1100.0     11.0     SKK490     0.000       2     2.40     15.00     1100.0     11.0     SKK490     0.000       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     - |

### 「変位法(有限長)」「変位法(無限長)」の場合

鋼管杭 (変位法で計算)-

|    | No  | 距離<br>(m) | 杭長<br>(m) | 杭径<br>(mm) | 厚さ1<br>(m) | 材質1    | 厚さ2<br>(m) | 材質2    | 杭厚さ<br>変化位置<br>(m) | 傾射角<br>(度) | 腐食速度<br>(mm/年) | ^            |
|----|-----|-----------|-----------|------------|------------|--------|------------|--------|--------------------|------------|----------------|--------------|
| Ĩ  | ▶ 1 | 1.05      | 15.00     | 1100.0     | 11.0       | SKK490 | 8.0        | SKK400 | 5.00               | 0.0        | 0.000          | 1            |
|    | 2   | 2.40      | 15.00     | 1100.0     | 11.0       | SKK490 | 8.0        | SKK400 | 5.00               | 0.0        | 0.000          |              |
| L  |     |           |           |            |            |        |            |        |                    |            |                |              |
| I. |     |           |           |            |            |        |            |        |                    |            |                |              |
| I. |     |           |           |            |            |        |            |        |                    |            |                |              |
| I. |     |           |           |            |            |        |            |        |                    |            |                |              |
| L  |     |           |           |            |            |        |            |        |                    |            |                | $\checkmark$ |

### H型鋼杭を選択した場合

「設計基準の方法(仮想固定点法)」と「変位法(有限長)」「変位法(無限長)」 では入力項目は次のようになります。

### 「設計基準の方法(仮想固定点法)」の場合

H形鋼杭 (仮想固定点法で計算)-

| No | 距離<br>(m) | 杭長<br>(m) | 幅 B<br>(mm) | 高さ H<br>(mm) | ウェブ t1<br>(mm) | フランジ t2<br>(mm) | 材質 | 腐食速度<br>(mm/年) | î |
|----|-----------|-----------|-------------|--------------|----------------|-----------------|----|----------------|---|
| •  |           |           |             |              |                |                 |    |                |   |
|    |           |           |             |              |                |                 |    |                |   |
|    |           |           |             |              |                |                 |    |                | _ |
|    |           |           |             |              |                |                 |    |                | - |
|    |           |           |             |              |                |                 |    |                | - |
|    |           |           |             |              |                |                 |    |                | - |
|    |           |           |             |              |                |                 |    |                | × |

# 「変位法(有限長)」「変位法(無限長)」の場合

-H形鋼杭 (変位法で計算)-

| No | 距離<br>(m) | 杭長<br>(m) | 幅 B<br>(mm) | 高さ H<br>(mm) | ウェブ t1<br>(mm) | フランジ t2<br>(mm) | 材質 | 傾射角<br>(度) | 腐食速度<br>(mm/年) | ^ |
|----|-----------|-----------|-------------|--------------|----------------|-----------------|----|------------|----------------|---|
| •  |           |           |             |              |                |                 |    |            |                |   |
|    |           |           |             |              |                |                 |    |            |                |   |
|    |           |           |             |              |                |                 |    |            |                |   |
|    |           |           |             |              |                |                 |    |            |                |   |
|    |           |           |             |              |                |                 |    |            |                |   |
|    |           |           |             |              |                |                 |    |            |                | ~ |

#### [距離(m)]

1列目の杭は棚版左端から、2列目以降は前 列の杭中心から、自身の列の杭中心までの距 離を入力します。

#### [杭長(m)]

棚版底面からの杭長を入力します。

[杭径(mm)]

(鋼管杭の場合) 鋼管杭の杭径を入力します。

[厚さ(mm)]

(鋼管杭の場合) 鋼管杭の杭厚さを入力します。

### [高さ、幅、ウェブ幅、フランジ幅(mm)]

(H型鋼杭の場合)H形鋼杭の高さ、幅、ウェブ幅、フランジ幅を入力します。



[材質]

杭形式が鋼管杭の場合は「SKK400」「SKK490」「SM490Y相当」「SM570相当」から、H形鋼杭の場合「SHK400M」「SHK490M」から鋼種を選択します。

[厚さ2(mm)]

(鋼管杭-変位法の場合)杭厚さ変化位置以降の鋼管杭の杭厚さを入力します。

[材質2]

(鋼管杭-変位法の場合)杭厚さ変化位置以降の鋼種を「SKK400」「SKK490」「SM490Y 相当」「SM570相当」から選択します。

### [杭厚さ変化位置(m)]

(鋼管杭-変位法の場合)鋼管杭の杭厚さ変化位置を棚版底面からの長さで入力 します。

方向

### [傾斜角(度)]

鉛直下方向より左回りを(+)とした角度 を入力します。

# [腐食速度(mm/年)]

腐食速度を入力します。

# <u>第2タブ(支持力)</u>



# [打設工法]

杭の打設工法を「打込鋼管(打撃工法)」「打込鋼管(バイブロハンマ工法)」「中堀 鋼管(平成29年道路橋示方書)」「中堀鋼管(平成24年道路橋示方書)」「埋込み杭(漁 港構造物の設計ガイド)」を選択します。

選択可能な打設工法は「設計基準」「計算方法」「杭の軸方向バネ定数の設定」の 3項目の組み合わせによって異なります。(以下表を参考)

|                   | 計算方法 | 設計基準の方法                                                         |
|-------------------|------|-----------------------------------------------------------------|
| 設計基準              |      | (仮想固定点法)                                                        |
| 港湾基準(H30)         |      | 打込鋼管(打撃)<br>中堀鋼管(H29道示)                                         |
| 港湾基準(H11)<br>漁港基準 |      | 打込鋼管(打撃)<br>打込鋼管(バイブロハンマ)<br>中堀鋼管(H24道示)<br>中堀鋼管(H29道示)<br>埋込み杭 |

| <u>変位法(無限長)</u> | ·変位法(有限長)     |             |               |
|-----------------|---------------|-------------|---------------|
| 杭の軸方向           |               |             |               |
| バネ定数            | H8道示<br>H14道示 | H29道示       | a=1.0         |
| 設計基準            |               |             |               |
| 港湾基準(H30)       | 打込鋼管(打撃)      | 中堀鋼管(H29道示) | 打込鋼管(打撃)      |
|                 |               |             | 中堀鋼管(H29道示)   |
| 港湾基準(H11)       | 打込鋼管(打撃)      | 中堀鋼管(H29道示) | 打込鋼管(打撃)      |
| 渔港基進            | 打込鋼管(バイブロハンマ) |             | 打込鋼管(バイブロハンマ) |
|                 | 中堀鋼管(H24道示)   |             | 中堀鋼管(H24道示)   |
|                 | 埋込み杭          |             | 中堀鋼管(H29道示)   |
|                 |               |             | 埋込み杭          |

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.693~

- 参照:『漁港・漁場の施設の設計参考図書 2015年』P.258~
- 参照:『道路橋示方書・同解説Ⅳ下部構造編 平成24年3月』P.387~
- 参照:『道路橋示方書・同解説Ⅳ下部構造編 平成29年11月』 P187~263
- [打込鋼管]
  - N1:杭先端位置でのN値を入力します。
  - N2: 杭先端から上方へ杭径の4倍までの平均N値を入力します。
  - $\alpha$ :閉塞率(閉塞杭では $\alpha = 1$ )を入力します。

参照:「日本港湾協会、港湾の施設の技術上の基準・同解説 平成19年7月」 P594

#### [中堀鋼管(平成 29 年道路橋示方書)]

杭の先端処理法を選択します。また、杭先端の極限支持力度 (qd) の算定に使用する 杭の先端地盤平均 N 値を設定します。

ad= 90 · N

- 最終打撃方式(先端粘性土層)
- 最終打撃方式(先端砂層及び砂礫層)
   gd=130・N
- セメントミルク噴出攪拌方式(先端砂層)
   ad=220・N
- セメントミルク噴出攪拌方式(先端砂礫層)
   qd=250・N

#### [中堀鋼管(平成24年道路橋示方書)]

杭の先端処理法を選択します。指定した方式により杭先端の極限支持力度 (qd)の 算定法を設定します。

- ・ 最終打撃方式 qd=300/5・N・a
- セメントミルク噴出攪拌方式(先端砂層)
   qd=150·N
- セメントミルク噴出攪拌方式(先端砂礫層) qd=200・N
- コンクリート打設方式(砂礫層及び砂層)
   qd=3000
- コンクリート打設方式(良質な砂礫層)
   ad=5000
- コンクリート打設方式(硬質粘性土層)
   qd=3・qu
- ・最終打撃工法
  - a: (支持層の換算根入れ)/(杭径)、先端地盤平均N値を入力します。
- ・セメントミルク噴出攪拌方式(先端砂層)、(先端砂礫層) 杭先端位置のN値を入力します。
- ・コンクリート打設方式(砂礫層及び砂層)、(良質な砂礫層)
   この方式の場合、入力はありません。
- ・コンクリート打設方式(硬質粘性土層) 一軸圧縮強度quを入力します。

#### [埋込み杭(漁港構造物の設計ガイド)]

 $\eta$ :開端杭の閉塞効力(閉端杭では $\eta = 1.0$ )を入力します。

N:先端抵抗N値(杭先端より下へ1.0d~上へ4.0dの間の実測N値の平均)を入力 します。

#### [杭周面に働く最大周面摩擦力度の推定]

支持力及び負の周面摩擦の最大値の算定式における係数を設定します。 道路橋示方書 平成8年に記載されている算定式の係数と 道路橋示方書 平成14年(平成24年)に記載されている算定式の係数との2種類が 選択できます。 参照:「日本道路協会,道路橋示方書・同解説Ⅳ下部構造編 平成8年12月」 P336 参照:「日本道路協会,道路橋示方書・同解説Ⅳ下部構造編 平成14年3月」 P362 参照:「日本道路協会,道路橋示方書・同解説Ⅳ下部構造編 平成29年11月」 P187~263 押込み杭/引抜き杭のそれぞれの支持力計算で、「腐食前」、「腐食後」のどちらの杭重量を使用するか選択します。

# [周面摩擦の算出に用いる長さ]

支持力・負の周面摩擦の検討で用いる周面摩擦力について、「実寸長」「鉛直方向 長さ」から選択します。この項目は斜杭の場合に有効です。



参照:『杭基礎設計便覧 平成27年3月』P.335

# <u>第3タブ(杭頭部)</u>

結合計算設計方法や設計基準によって入力画面が変わります。 結合計算設計方法:許容応力度法



結合計算設計方法:限界状態設計法「港湾基準(H11)」「漁港基準」





# 結合計算設計方法:限界状態設計法「港湾基準(H30)」

### [検討項目]

(限界状態設計法の場合) 杭頭部の検討項目を「押込み/引抜きせん断の検討」「軸 方向カに対する検討」「曲げモーメントに対する検討」「水平方向の押し抜きせん 断の検討」

### [水平方向押抜きせん断応力計算]

(許容応力度法の場合)「水平方向押抜きせん断応力計算」で、「する」を指定した場合、入力した杭データの内、最も陸側の杭についてのみ検討を行います。

### [埋込長]

埋込長を入力します。この値は杭頭部の検討ー軸方向力に対する検討、杭頭モーメントに対する検討で使用します。

### [鉛直方向 押込有効厚]

杭頭から上部工天端高までの距離を入力します。杭頭部の計算 - 押込み/引抜き せん断の検討で使用します。

## [鉛直方向 引抜有効厚]

最下でのずれ止め位置から上部工下端までの距離を入力します。杭頭部の計算一 押込み/引抜きせん断の検討で使用します。

#### [鉛直方向 押込鉄筋比Pw/引抜鉄筋比Pw']

(限界状態設計法の場合)上部工上側/下側の鉄筋比を入力します。杭頭部の計算 一押込み/引抜きせん断の検討で使用します。

### [水平方向 押込鉄筋比]

(限界状態設計法の場合)上部工上側/下側の鉄筋比を入力します。杭頭部の計算 ー水平方向の押し抜きせん断の検討で使用します。

### [水平方向 有効高さ]

杭端部から上部工下端までの距離を入力します。杭頭部の計算ー水平方向の押し 抜きせん断の検討で使用します。

#### [せん断抵抗面積]

(限界状態設計法-H30港湾基準の場合)杭頭部のせん断抵抗面積を入力します。 杭頭部の計算-水平方向の押し抜きせん断の検討で使用します。

### [縦リブ]

(限界状態設計法-H30港湾基準の場合)杭頭部に設置する縦リブの枚数を入力し ます。この値は杭頭部の検討ー軸方向力に対する検討で使用します。

# [プレート長]

(限界状態設計法-H30港湾基準の場合)杭頭部に設置する縦リブのプレート長を 入力します。この値は杭頭部の検討-軸方向力に対する検討で使用します。

# [プレート幅]

(限界状態設計法-H30港湾基準の場合)杭頭部に設置する縦リブのプレート幅を 入力します。この値は杭頭部の検討ー軸方向力に対する検討で使用します。

## <u>4-7. 腐食</u>

前面矢板、タイロッド、腹起こし材、杭鋼材の腐食を設定します。 腐食の設定画面は、1タブ(画面)の構成となります。

| ファイル(E) データ入力(I) 設定(E) 計算(C) ヘルプ(H)                          |     |
|--------------------------------------------------------------|-----|
|                                                              |     |
| E 🖆 🔚   🚍 🚑   🤋                                              |     |
| 圖 國 開 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖 圖                      |     |
| 腐食                                                           |     |
| <b>並</b> 不 欠 振 し / ロッド                                       | ヘルプ |
| 削組大阪 ダイロット<br>市会連度(mm/(年)) 0,000                             |     |
| 腐食速度(mm/年)   腐良速度(mm/年) 0.000                                |     |
| 海側 0.100 10月午数(午) 0                                          |     |
| 陸 側 0.020 B #1=1 + +                                         |     |
| 版正し14<br>度正し14                                               |     |
| 電気防貨(海側) 腐貨速度(mm/年) 0.000                                    |     |
| ● O(4)い         電気防食率         U.UU         耐用年数(年)         U |     |
| ○ 9 9 電気防食有効年数(年) 0                                          |     |
| <del>就用 (                                   </del>           |     |
| ■17月十款(十) <u>30</u> 腐食速度(mm/年) (※)杭条件より杭毎に設定                 |     |
| 腐貨後の助面性能     耐用年数(年)     30                                  |     |
|                                                              |     |
| ● 満貫後の明田(広叙小ら明田二八七三人)下で昇山<br>○ 建石紙石小村名か「紙石(花)、「二、コントな筥山      |     |
|                                                              |     |
| 有効桁数(桁) 0                                                    |     |
| 追加鋼矢板                                                        |     |
| 低減率(%) 100                                                   |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |

#### [腐食速度]

前面矢板の海側・陸側での腐食速度を入力します。

#### [電気防食]

前面矢板での電気防食の考慮の有無と、考慮した場合の電気防食率・電気防食有効 年数を入力します。

#### [耐用年数]

前面矢板の耐用年数を入力します。

[腐食後の断面性能-算出方法]

前面矢板の腐食後の断面性能の計算方法を指定します。鋼矢板を用いて検討処理 を行う場合に有効となります。ここでは、以下の2つの中から選択します。

- ・腐食後の断面係数から断面二次モーメントを算出します。
- ・残存断面性能から断面係数・断面二次モーメントを算出します。
- ※ [腐食後の断面係数から断面二次モーメントを算出]を指定した場合の断面二次モーメントの計算方法は、商品概説書に記述してあります。[残存断面性能から断面係数・断面二次モーメントを算出]を指定した場合の残存断面性能とは、Z/Z<sub>0</sub>のことを指します。

#### [有効桁数]

腐食後の鋼矢板の断面性能の有効桁数を指定します。0を指定すれば、小数点以下 1桁目を四捨五入し、鋼矢板の断面性能とします。0以外の値を入力すれば、その 桁で断面二次モーメント及び、断面係数を切り捨てます。

### [追加鋼矢板の低減率]

[矢板形式]で「矢板任意指定」を指定した場合に入力します。既存鋼矢板データの場合は、腐食速度から腐食しろを計算して腐食後の矢板の断面性能を算出します。追加鋼矢板データの場合にのみ、この値により腐食後の矢板の断面性能を計算します。

### [タイロッドの腐食]

タイロッドの腐食速度・耐用年数を入力します。腐食速度あるいは耐用年数が0.0 の場合は腐食を考慮しません。タイ材種類がタイロッドの時のみ有効となります。

## [腹起こし材の腐食]

腹起こし材の腐食速度・耐用年数を入力します。腐食速度あるいは耐用年数が0.0 の場合は腐食を考慮しません。

### [杭鋼材の腐食]

杭鋼材の耐用年数を入力します。腐食速度はタブ「杭寸法」で各杭に入力します。 耐用年数はタブ「杭条件」で入力した腐食速度から各杭の腐食しろを計算します。 耐用年数が0.0の場合は腐食を考慮しません。 土質定数を指定します。〔最大15層〕

土質定数の設定画面は、最大3タブ(画面)の構成となります。画面切り替えはタブ(主 働、受働、棚杭計算用)をクリックします。棚杭計算用タブは主働タブの「杭毎に土質定 数を設定する」を選択すると表示されます。

# <u>第1タブ(主働)</u>

| 📊 棚式()             | 系船岸5 Ver2.1.                                                                    | 2 - サンプルデー      | ·タ_H30港湾基         | 準                            |                 |                      |       |           |             |          | _                                  |                                 | × |
|--------------------|---------------------------------------------------------------------------------|-----------------|-------------------|------------------------------|-----------------|----------------------|-------|-----------|-------------|----------|------------------------------------|---------------------------------|---|
| ファイル(E             | ) データ入力(                                                                        | ]) 設定(E)        | 計算( <u>C</u> )    | ヘルプ( <u>H</u> )              |                 |                      |       |           |             |          |                                    |                                 |   |
| -<br>              | -                                                                               | ?<br>?          | _                 | _                            |                 |                      |       |           |             |          |                                    |                                 |   |
| ■<br>基本条           | 四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四月<br>四 | ⊧ 上部工           | 前面矢板              | ī<br>身子材                     | <b>↓</b><br>杭寸法 | <mark>同</mark><br>腐食 | 土質条件  | ▶<br>任意土圧 | ▲<br>他外力 限界 | 宿<br>財状態 | <mark>團</mark><br>模式図              |                                 |   |
|                    | 主働                                                                              |                 | 受                 | 働                            |                 |                      |       |           |             |          |                                    |                                 |   |
| □ 杭                | 毎に土質定数                                                                          | 敗を設定する          | 5                 |                              |                 |                      |       |           |             |          |                                    | A.J.5                           | ۶ |
| No                 | 層上限の                                                                            |                 | 単位体               | 積重量                          | 内部              | 粘着力                  | 粘着勾配  |           | 11.13       | 51/#     | 一地盤                                | 変形                              |   |
|                    | 標高<br>(m)                                                                       | 土筫              | [湿潤]<br>(kN/m³)   | [飽和]<br>(kN/m <sup>3</sup> ) | 摩擦角<br>(度)      | C0<br>(kN/m²)        | К     | 周面摩擦      | 計算方法        |          | 反刀孫釵<br>kh<br>(kN/m <sup>3</sup> ) | 1旅叙<br>E0<br>(kN/m <sup>2</sup> | ) |
| 1                  | 4.50                                                                            | 砂質土             | 18.000            | 20.000                       | 40.0            |                      |       | 支〇負×      | k=1500N     | 5.0      |                                    | -                               |   |
| 2                  | 0.20                                                                            | 砂質土             | 18.000            | 20.000                       | 25.0            |                      |       | 支〇負×      | k=1500N     | 5.0      |                                    | -                               |   |
| 3                  | -3.00                                                                           | 粘性土             | 19.020            | 19.020                       |                 | 16.820               | 0.000 | 支〇負〇      | 粘土qu→k      | 0.0      |                                    | -                               |   |
| 4                  | -4.40                                                                           | 砂質土             | 18.000            | 20.000                       | 30.0            |                      |       | 支持地盤      | k=1500N     | 5.0      |                                    | -                               |   |
| 周面0支<br>負;負<br>支持1 | )考え方<br>:持力の検討<br>の周面摩擦<br>地盤:支持地                                               | (<br>の検討 )<br>盤 | ):考慮する<br>く:考慮しな! |                              |                 |                      |       |           |             |          |                                    |                                 |   |

[杭毎に土質定数を設定する]

杭毎に土質定数を設定する場合に選択します。下図の青枠部分(杭の照査)が棚杭 計算用タブにて各杭で設定するようになります。赤枠部分は矢板・棚版に作用する 土圧の計算で使用します。

| □杭 | 毎に土質定数            | 敗を設定する | j.                                                 |                                     |                  |                      |           |      |             |           |                                                     | ヘルプ                                    |
|----|-------------------|--------|----------------------------------------------------|-------------------------------------|------------------|----------------------|-----------|------|-------------|-----------|-----------------------------------------------------|----------------------------------------|
| No | 層上限の<br>標高<br>(m) | 土質     | 里1辺14 <sup>;</sup><br>[湿潤]<br>(kN/m <sup>3</sup> ) | 積里里<br>[飽和]<br>(kN/m <sup>3</sup> ) | 内部<br>摩擦角<br>(度) | 粘着力<br>CO<br>(kN/m²) | 粘着勾配<br>K | 周面摩擦 | kh値<br>計算方法 | N値<br>(回) | 地盤<br>反力係数<br><sup>kh</sup><br>(kN/m <sup>3</sup> ) | 変形<br>係数<br>EO<br>(kN/m <sup>2</sup> ) |
| 1  | 4.50              | 砂質土    | 18.000                                             | 20.000                              | 40.0             |                      |           | 支〇負× | k=1500N     | 5.0       |                                                     |                                        |
| 2  | 0.20              | 砂質土    | 18.000                                             | 20.000                              | 25.0             |                      |           | 支〇負× | k=1500N     | 5.0       |                                                     |                                        |
| 3  | -3.00             | 粘性土    | 19.020                                             | 19.020                              |                  | 16.820               | 0.000     | 支〇負〇 | 粘土qu→k      | 0.0       |                                                     |                                        |
| 4  | -4.40             | 砂質土    | 18.000                                             | 20.000                              | 30.0             |                      |           | 支持地盤 | k=1500N     | 5.0       |                                                     |                                        |
|    |                   |        |                                                    |                                     |                  |                      |           |      |             |           |                                                     |                                        |
|    |                   |        |                                                    |                                     |                  |                      |           |      |             |           |                                                     |                                        |

ヘルプ

「杭毎に土質定数を設定する」選択しない

| ☑杭 | ◎杭毎に土質定数を設定する |      |                 |                 |            |               |       |  |  |  |  |  |
|----|---------------|------|-----------------|-----------------|------------|---------------|-------|--|--|--|--|--|
| No | 層上限の          | 1.55 | 単位体             | 植重重             | 内部         | 粘着力           | 粘着勾配  |  |  |  |  |  |
|    | 標高<br>(m)     | 工具   | [湿潤]<br>(kN/m³) | [飽和]<br>(kN/m³) | 摩擦角<br>(度) | CO<br>(kN/m²) | К     |  |  |  |  |  |
| 1  | 4.50          | 砂質土  | 18.000          | 20.000          | 40.0       |               |       |  |  |  |  |  |
| 2  | 0.20          | 砂質土  | 18.000          | 20.000          | 25.0       |               |       |  |  |  |  |  |
| 3  | -3.00         | 粘性土  | 19.020          | 19.020          |            | 16.820        | 0.000 |  |  |  |  |  |
| 4  | -4.40         | 砂質土  | 18.000          | 20.000          | 30.0       |               |       |  |  |  |  |  |
|    |               |      |                 |                 |            |               |       |  |  |  |  |  |
|    |               |      |                 |                 |            |               |       |  |  |  |  |  |

「杭毎に土質定数を設定する」選択する

# [層上限の標高]

土層の上限の高さを入力します。第1層目の高さは、必ず地表面天端高と同じ高さ にして下さい。

# [土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となり ます。粘性土の場合、粘着力が入力可能となります。

# [単位体積重量]

[湿潤]

土の単位体積重量(湿潤)を入力します。

[飽和]

土の単位体積重量(飽和)を入力します。水中の単位体積重量(有効)は、この値 -10.0したものを使用します。

# [内部摩擦角]

土の内部摩擦角を入力します。

#### [粘着力]

土層の粘着基準線での粘着力(C<sub>0</sub>:kN/m<sup>2</sup>)と粘着勾配(K)を入力します。その値 からプログラム内部で粘着力を計算します。 粘着力は次式により算定されます。

 $C = C_0 + kz$ 

ここに

C:任意の標高における粘着力

 $C_0$ :粘着力切片

 $(N / mm^2)$  $(N / mm^3)$ 

k:粘着力勾配

(N / mm<sup>3</sup> (m)

z:N値計算対象となる任意の標高~粘着力基準高間の長さ (m)

粘着力の算定について、粘着勾配がある場合、zによって粘着力の値は変わりま す。zの値の取り方は土圧の算定・地盤反力係数および杭周面の粘着力(支持力) の算定・杭先端位置の粘着力(支持力)の算定で次のようになります。 土圧の算定



# 地盤反力係数および杭周面の粘着力(支持力)の算定



この項目は、粘性土( φ が 0.0) の場合のみ入力可能となります。

### [負の周面摩擦]

土層毎に支持力計算/負の周面摩擦検討時の作用を指定します。

・支〇負×:支持力の検討では作用し、負の周面摩擦の検討では作用しない

- ・支〇負〇:支持力、負の周面摩擦の検討と共に作用する
- 支持地盤:支持地盤

・支×負×:支持力、負の周面摩擦の検討と共に作用しない

・支×負〇:支持力の検討では作用せず、負の周面摩擦の検討では作用する ※最後の層は必ず「支持地盤」を選択して下さい。

#### [K値の計算法]

地盤反力係数(*K*<sub>h</sub>)の計算方法を以下の7種類から指定します。

- 1) 直接入力
- 2) K=1500N
- 3) N→kh図
- 4) 道示N→k
- 5) 道示E0→k

※4,5を選択した場合、本システムでは杭毎に算定された1/βの範囲内での平均 特性値と地盤反力係数を用いて地盤反力係数を計算しています。

- 6)粘土qu→k
- $Kh = 1500 \cdot 2 \cdot X \cdot C$

ここに

- X:一軸圧縮強度qu(N/mm<sup>2</sup>)=N/Xの分母の値
- C: 土層の粘着力(N/mm<sup>2</sup>)
- 7)相関式

 $K_H = 3910 \cdot N^{0.733}$ 

#### [N値]

土層のN値を入力します。杭部の計算及び、支持力計算で使用します。

#### [地盤反力係数]

K値の計算法で、「直接入力」を選択した場合、横方向地盤反力係数K値を入力し ます。

#### [変形係数]

K値の計算法で、「道示EO→k」を選択した場合、地盤の変形係数を入力します。
# <u>第2タブ(受働)</u>

| î  | 🛚 棚式係                                | 《船岸5 Ver2.1.  | 2 - サンプルデー | ・タ_H30港湾基       | 準               |                       |                            |           |           |                       |                  | _                     |          | ×  |
|----|--------------------------------------|---------------|------------|-----------------|-----------------|-----------------------|----------------------------|-----------|-----------|-----------------------|------------------|-----------------------|----------|----|
|    | ファイル( <u>F</u> )                     | データ入力(        | ]) 設定(E)   | 計算( <u>C</u> )  | ヘルプ( <u>H</u> ) |                       |                            |           |           |                       |                  |                       |          |    |
| 1  | ) 🛩 I                                | - 🧕 🥭         | 8          |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    | ──────────────────────────────────── | 國<br>件 計算条件   | ╄<br>上部工   | 前面矢板            | 夏 タイ材           | <mark>↓</mark><br>杭寸法 | 腐食                         | ▲<br>土質条件 | ▶<br>任意土圧 | <mark>約</mark><br>他外力 | <b>了</b><br>限界状態 | <mark>麗</mark><br>模式図 |          |    |
|    |                                      | 主働            |            | Ŧ               | 働               |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       | <u>Λ</u> | ルプ |
| Γ  | No                                   | 属上限の          |            | 単位体:            | 積重量             | 内部                    | 粘着力                        | 粘着勾配      | ]         |                       |                  |                       |          |    |
|    | 140                                  | /遭点(m)<br>(m) | 土質         | [湿潤]<br>(kN/m³) | [飽和]<br>(kN/m³) | 摩擦角<br>(度)            | C0<br>(kN/m <sup>2</sup> ) | K         |           |                       |                  |                       |          |    |
|    | 1                                    | 0.00          | 砂質土        | 18.000          | 20.000          | 30.0                  |                            |           | [         |                       |                  |                       |          |    |
|    | 2                                    | -2.60         | 粘性土        | 17.090          | 17.090          |                       | 14.500                     | 5.000     |           |                       |                  |                       |          |    |
|    | 3                                    | -6.00         | 砂質土        | 18.000          | 20.000          | 30.0                  |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
| I. |                                      |               |            |                 |                 |                       |                            |           | ]         |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |
|    |                                      |               |            |                 |                 |                       |                            |           |           |                       |                  |                       |          |    |

#### [層上限の標高]

土層の上限の高さを入力します。第1層目の高さは、必ず設計海底面高と同じ高さ にして下さい。

#### [土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となり ます。粘性土の場合、粘着力が入力可能となります。

# [単位体積重量]

[湿潤]

土の単位体積重量(湿潤)を入力します。

[飽和]

土の単位体積重量(飽和)を入力します。水中の単位体積重量(有効)は、この値 -10.0したものを使用します。

#### [内部摩擦角]

土の内部摩擦角を入力します。粘性土の場合は、必ず0.0を入力して下さい。

### [粘着力]

土層の粘着基準線での粘着力(C<sub>0</sub>:kN/m<sup>2</sup>)と粘着勾配(K)を入力します。その値 からプログラム内部で粘着力を計算します。 粘着力は次式により算定されます。

 $C = C_0 + kz$ 

ここに

C:任意の標高における粘着力

 $C_0$ :粘着力切片

 $(N/mm^2)$ 

k:粘着力勾配

 $(N / mm^3)$ (m)

z:N値計算対象となる任意の標高~粘着力基準高間の長さ (m)

粘着力の算定について、粘着勾配がある場合、zによって粘着力の値は変わりま す。zの値の取り方は土圧の算定の算定で次のようになります。 土圧の算定



# <u>第3タブ(棚杭計算用)</u>

| 📊 棚式(                 | 系船岸5 Ver2.1.                      | .2 - サンプルデー                 | タ_H30港湾基             | 準               |                         |                       |                       |                                                     |                                        |           | _                     |          | ×  |
|-----------------------|-----------------------------------|-----------------------------|----------------------|-----------------|-------------------------|-----------------------|-----------------------|-----------------------------------------------------|----------------------------------------|-----------|-----------------------|----------|----|
| ファイル(E                | ) データ入力(                          | ( <u>]</u> ) 設定( <u>E</u> ) | 計算( <u>C</u> )       | ヘルプ( <u>H</u> ) |                         |                       |                       |                                                     |                                        |           |                       |          |    |
| 🗅 🚔                   | 日 🧕 🎒                             | ?                           |                      |                 |                         |                       |                       |                                                     |                                        |           |                       |          |    |
| ∭<br>基本条              | [四]<br>件 計算条件                     | 牛 上部工                       | 前面矢枥                 | ■<br>東 タイ材      | <mark>↓</mark><br>杭寸法   | <b>洞</b><br>腐食 ±      | <mark>●</mark><br>質条件 | ▶<br>任意土圧                                           | <mark>約</mark><br>他外力                  | ि<br>限界状態 | <mark>展</mark><br>模式図 |          |    |
|                       | 主働                                |                             | 受                    | を働              |                         | 棚杭計算用                 |                       |                                                     |                                        |           |                       |          |    |
| 第                     | 1列 ~                              | << <                        | >                    | >>              | ・括コビー                   |                       |                       |                                                     |                                        |           |                       | <u>^</u> | ルプ |
| No                    | 層上限の<br>標高<br>(m)                 | 土質                          | 粘着力<br>CO<br>(kN/m²) | 粘着勾配<br>K       | 周面摩擦                    | <sup>K値</sup><br>計算方法 | N値<br>(回)             | 地盤<br>反力係数<br><sup>kh</sup><br>(kN/m <sup>3</sup> ) | 変形<br>係数<br>EO<br>(kN/m <sup>2</sup> ) |           |                       |          |    |
| 1                     | 4.50                              | 砂質土                         |                      |                 | 支〇負×                    | k=1500N               | 5.0                   |                                                     |                                        |           |                       |          |    |
| 2                     | 0.20                              | 砂質土                         |                      |                 | 支〇負×                    | k=1500N               | 5.0                   |                                                     |                                        |           |                       |          |    |
| 3                     | -3.00                             | 粘性土                         | 16.820               | 0.000           | 支〇負〇                    | 粘土qu→k                | 0.0                   |                                                     |                                        |           |                       |          |    |
| 4                     | -4.40                             | 砂質土                         |                      |                 | 支持地盤                    | k=1500N               | 5.0                   |                                                     |                                        |           |                       |          |    |
| 周面の<br>支:<br>1<br>支持: | )考え方<br>(持力の検討<br>の周面摩擦<br>地盤:支持地 |                             | ):考慮する<br>く:考慮しな(    |                 | 出長の設定<br>主働側崩壊<br>土層最上限 | 面より算定<br>より設定         |                       |                                                     |                                        |           |                       |          |    |

各杭の土質定数を設定します。コンボボックスもしくはボタンを押すことにより、コンボボックスに表示されている杭列の土質定数に切り替わります。

[一括コピー]を押した場合、杭の土質データを現在表示されている土質データでコピーします。

#### [突出長の設定]

杭の突出長の設定方法を「主働崩壊面より算定」「土層最上限より設定」より選択 します。「主働崩壊面より算定」は常時・地震時・津波時での崩壊面を基に各杭の 突出長を算定します。

「土層最上限より設定」は入力した土層の最上限の標高と棚底面高までの長さを 突出長として設定します。



#### [層上限の標高]

土層の上限の高さを入力します。突出長の設定で、「主働崩壊面より算定」を選択 した場合、第1層目の高さは、必ず地表面天端高と同じ高さにして下さい。

[土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となり ます。粘性土の場合、粘着力が入力可能となります。

#### [粘着力]

土層の粘着基準線での粘着カ(C₀:kN/m²)と粘着勾配(K)を入力します。その値 からプログラム内部で粘着力を計算します。 粘着力は次式により算定されます。

 $C = C_0 + kz$ 

ここに

- C:任意の標高における粘着力
- $C_0$ :粘着力切片

k:粘着力勾配

 $(N / mm^{2})$  $(N / mm^{3})$ (m)

z:N値計算対象となる任意の標高~粘着力基準高間の長さ (m)

粘着力の算定について、粘着勾配がある場合、zによって粘着力の値は変わりま す。zの値の取り方は地盤反力係数および杭周面の粘着力(支持力)の算定・杭先 端位置の粘着力(支持力)の算定で次のようになります。 地盤反力係数および杭周面の粘着力(支持力)の算定





土圧計算範囲下限高

この項目は、粘性土の場合のみ入力可能となります。

#### [負の周面摩擦]

土層毎に支持力計算/負の周面摩擦検討時の作用を指定します。

- ・支〇負×:支持力の検討では作用し、負の周面摩擦の検討では作用しない
- ・支〇負〇:支持力、負の周面摩擦の検討と共に作用する
- 支持地盤:支持地盤

・支×負×:支持力、負の周面摩擦の検討と共に作用しない

・支×負〇:支持力の検討では作用せず、負の周面摩擦の検討では作用する ※最後の層は必ず「支持地盤」を選択して下さい。

# [K値の計算法]

地盤反力係数(K<sub>h</sub>)の計算方法を以下の7種類から指定します。

- 1) 直接入力
- 2) K=1500N
- 3) N→kh図
- 4) 道示N→k
- 5) 道示E0→k

※4,5を選択した場合、本システムでは杭毎に算定された1/βの範囲内での平均 特性値と地盤反力係数を用いて地盤反力係数を計算しています。

- 6)粘土qu→k
- $Kh = 1500 \cdot 2 \cdot X \cdot C$

ここに

- X:一軸圧縮強度qu(N/mm<sup>2</sup>)=N/Xの分母の値
- C: 土層の粘着力(N/mm<sup>2</sup>)
- 7)相関式

 $K_H = 3910 \cdot N^{0.733}$ 

#### [N値]

土層のN値を入力します。杭部の計算及び、支持力計算で使用します。

#### [地盤反力係数]

K値の計算法で、「直接入力」を選択した場合、横方向地盤反力係数K値を入力します。

#### [変形係数]

K値の計算法で、「道示EO→k」を選択した場合、地盤の変形係数を入力します。

矢板に作用する土圧直接入力する場合に使用します。 任意土圧が作用する入力設定箇所はタブに応じて、次のように分かれます。



# <u>第1~第2タブ(矢板の検討/杭の検討)</u>

| 📊 棚式係船           | 沿岸5 Ver2.1.2 - | サンブルデータ_ト         | H30港湾基準            |               |     |    |      |      |           |           | _                     | × |
|------------------|----------------|-------------------|--------------------|---------------|-----|----|------|------|-----------|-----------|-----------------------|---|
| ファイル( <u>F</u> ) | データ入力(!)       | 設定(E)             | 計算( <u>C</u> ) へルナ | '( <u>H</u> ) |     |    |      |      |           |           |                       |   |
| D 🛩 🖬            |                |                   | _                  |               |     |    | _    |      | 4.5       | -         |                       |   |
| <br>■ 基本条件       | <br>計算条件       | - <b>□</b><br>上部工 | 前面矢板               | 「<br>タイ材 オ    | 九寸法 | 腐食 | 土質条件 | 任意土圧 | ₩】<br>他外力 | い<br>限界状態 | <mark>∰</mark><br>模式図 |   |
| 矢板               | の検討            |                   | の検討                |               |     |    |      |      |           |           |                       |   |
| 3                | 主働側            |                   | 受働側                |               |     |    |      |      |           |           |                       | 1 |
| 3                | 永続状態           |                   | L1 地震動             |               |     |    |      |      |           |           |                       |   |
| 任意日              | 上圧の作用ー         |                   |                    |               |     |    |      |      |           |           |                       |   |
| <b>0</b> U       | ない C           | ) する              |                    |               |     |    |      |      |           |           |                       |   |
| 高さ               | 標調             | 高(m)              | 土圧強                | 度(kN/m²)      |     |    |      |      |           |           |                       |   |
| 取待               | 層上限            | 層下限               | 層上限                | 層下限           |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | -   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | -   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | _   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | -   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | _   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               | _   |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |
|                  |                |                   |                    |               |     |    |      |      |           |           |                       |   |

[任意土圧の作用]

任意土圧の作用を「しない」「する」から選択します。 「する」を選択した場合、任意土圧が設定できるようになります。 格検討条件での任意土圧の作用を設定するようになります。

# 任意土圧の作用を「する」で選択した場合

## [高さ取得]

土質条件で既に設定した「層上限の標高」から値を取得して標高一層上限/層下限 の値に設定します。最下端の層下限の値には基本条件で設定した「土圧計算範囲下 限高」が設定されます。 最上端の層上限の値には 矢板の検討-主働側の場合、棚底面高 矢板の検討-受働側の場合、設計海底面高 杭 の検討-主働側の場合、地表面天端高 杭 の検討-受働側の場合、棚底面高 これらの値が設定されます。

[標高-層上限/層下限]

土質条件で既に設定した「層上限の標高」から値を取得して標高-層上限/層下限 の値に設定します。

#### [土圧強度-層上限/層下限]

土質条件で既に設定した「層上限の標高」から値を取得して標高 – 層上限/層下限 の値に設定します。

# <u>4-10. 他外力</u>

|                                 |                                                          |                      | [法                |                                                               |                                                           |                                                              |                                                           |                        |                       |   | >  |
|---------------------------------|----------------------------------------------------------|----------------------|-------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------|-----------------------|---|----|
| イル( <u>E</u> ) デー               | -タ入力(1) 設定(E)                                            | 計算( <u>C</u> )       | ヘルプ( <u>H</u> )   |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
| 🛩 🖪 💆                           | 2 4 ?                                                    |                      |                   |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
| ────<br>本条件 計                   | 週 🛄<br>・算条件 上部エ                                          | ↓<br>前面矢板            | 瓦<br>ब्रह्म विकास | <mark>↓</mark><br>杭寸法                                         | <mark>┣</mark><br>腐食 土                                    | 算条件任意                                                        | ▶                                                         | <b>1</b> です<br>トカ 限界状態 | <mark>展</mark><br>模式図 |   |    |
| その他                             | 外力                                                       |                      |                   |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
| 上載荷重                            |                                                          |                      |                   |                                                               |                                                           |                                                              |                                                           |                        |                       | A | ルプ |
| 上載荷重開始位置X座標 ()                  |                                                          |                      | 0 3.00            |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
| 杭の                              |                                                          | <br>を考慮する            | 十番                | 高街                                                            | _                                                         |                                                              |                                                           |                        |                       |   |    |
| 堂時                              |                                                          | $(kN/m^2)$           | 10.00             | 0.00                                                          |                                                           |                                                              |                                                           |                        |                       |   |    |
|                                 |                                                          | $(kN/m^2)$           | 5.00              | 0.00                                                          | -                                                         |                                                              |                                                           |                        |                       |   |    |
| 津油時                             |                                                          | $(kN/m^2)$           | 10.00             | 0.00                                                          | -                                                         |                                                              |                                                           |                        |                       |   |    |
|                                 |                                                          |                      |                   |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
|                                 |                                                          |                      |                   |                                                               |                                                           |                                                              |                                                           |                        |                       |   |    |
|                                 |                                                          |                      |                   | 鉛                                                             | 直力                                                        | 水平                                                           | 『カ                                                        |                        |                       |   |    |
|                                 | 5                                                        | トータな                 |                   | 作用力                                                           | 作用位置                                                      | 作田力                                                          | 作用位果                                                      |                        |                       |   |    |
|                                 |                                                          | 172-010              |                   | (kN/m)                                                        | (m)                                                       | (kN/m)                                                       | (m)                                                       |                        |                       |   |    |
|                                 | その他外力1                                                   | 170-010              |                   | (kN/m)<br>10.000                                              | (m)<br>1.000                                              | (kN/m)<br>5.000                                              | (m)<br>4.000                                              |                        |                       |   |    |
| 常時                              | その他外力1<br>その他外力2                                         |                      |                   | (kN/m)<br>10.000<br>9.000                                     | (m)<br>1.000<br>1.000                                     | (kN/m)<br>5.000<br>4.000                                     | (m)<br>4.000<br>4.000                                     |                        |                       |   |    |
| 常時                              | その他外力1<br>その他外力2<br>その他外力3                               |                      |                   | (kN/m)<br>10.000<br>9.000<br>8.000                            | (m)<br>1.000<br>1.000<br>1.000                            | (kN/m)<br>5.000<br>4.000<br>3.000                            | 4.000<br>4.000<br>4.000                                   |                        |                       |   |    |
| 常時                              | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4                     | 122-149              |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000                   | (m)<br>1.000<br>1.000<br>1.000<br>1.000                   | (kN/m)<br>5.000<br>4.000<br>3.000<br>2.500                   | 4.000<br>4.000<br>4.000<br>4.000<br>4.000                 |                        |                       |   |    |
| 常時                              | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4<br>その他外力5           | 173-149 <sup>,</sup> |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000<br>4.000          | (m)<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | (kN/m)<br>5.000<br>4.000<br>3.000<br>2.500<br>2.000          | 4.000<br>4.000<br>4.000<br>4.000<br>4.000                 |                        |                       |   |    |
| 常時<br>地震時                       | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4<br>その他外力5<br>その他外力6 |                      |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000<br>4.000<br>3.000 | (m)<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | (kN/m)<br>5.000<br>4.000<br>3.000<br>2.500<br>2.000<br>1.500 | 4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000        |                        |                       |   |    |
| 常時<br>地震時<br>津波-<br>al:<br>2015 | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4<br>その他外力5<br>その他外力6 |                      |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000<br>4.000<br>3.000 | (m)<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | (kN/m)<br>5.000<br>4.000<br>3.000<br>2.500<br>2.000<br>1.500 | (m)<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000 |                        |                       |   |    |
| 常時<br>地震時<br>津波-<br>引き波時        | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4<br>その他外力5<br>その他外力6 |                      |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000<br>4.000<br>3.000 | (m)<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | (kN/m)<br>5.000<br>4.000<br>3.000<br>2.500<br>2.000<br>1.500 | (m)<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000 |                        |                       |   |    |
| 常時<br>地震時<br>津波-<br>引き波時        | その他外力1<br>その他外力2<br>その他外力3<br>その他外力4<br>その他外力5<br>その他外力6 |                      |                   | (kN/m)<br>10.000<br>9.000<br>8.000<br>5.000<br>4.000<br>3.000 | (m)<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | (KN/m)<br>5.000<br>4.000<br>3.000<br>2.500<br>2.000<br>1.500 | (m)<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000 |                        |                       |   |    |

※結合計算設計方法で「許容応力度法」を選択した場合の画面になります。

# [上載荷重]

上載荷重の開始位置と各検討条件での主働側、受働側の上載荷重を入力します。 杭の設計においては受働側に作用する上載荷重の考慮の有無を指定します。

# [その他の外力]

棚部に作用するその他の外力を入力します。作用位置は標高で入力します。



| 明式係船岸51               | Ver2.1.2 - サンプルデ-    | -タ H30港湾基                    | 進                   |               |                        |         |          |         | _    | П |       |
|-----------------------|----------------------|------------------------------|---------------------|---------------|------------------------|---------|----------|---------|------|---|-------|
| イル(E) デー              | タスカ(1) 設定(F)         | 計算(0)                        | 、<br>ヘルプ(H)         |               |                        |         |          |         |      | - |       |
|                       |                      | a1 <del>#</del> ( <u>C</u> ) | · ()v2( <u>11</u> ) |               |                        |         |          |         |      |   |       |
| e • • • • • • • •     |                      |                              | <b>1</b>            | -             |                        |         | <b>1</b> | A 17    |      |   |       |
| ■3<br>本条件 計:          | 📟 📟<br>算条件 上部工       | : 前面矢板                       | ā 97材               | 杭寸法           | 腐食土                    | :質条件 任意 | 急土圧 他多   | 小力 限界状! | 態模式図 |   |       |
| その他                   | 外力                   |                              |                     |               |                        |         |          |         |      |   |       |
|                       |                      |                              |                     |               |                        |         |          |         |      |   | X II. |
| 上載荷重                  |                      |                              |                     |               |                        |         |          |         |      |   | 00    |
| 上戦间里<br>上載荷重開始位置X座標 ( |                      |                              | (m                  | N 3.00        |                        |         |          |         |      |   |       |
|                       | 没計で受働十日を             | <br>F 考慮する                   | 十番                  | 高街            | _                      |         |          |         |      |   |       |
| 永続状態                  |                      | $(kN/m^2)$                   | ±10.00              | 0.00          |                        |         |          |         |      |   |       |
| 11 地震                 | 勐                    | $(kN/m^2)$                   | 5.00                | 0.00          | -                      |         |          |         |      |   |       |
| 津波時                   |                      | $(kN/m^2)$                   | 10.00               | 0.00          | -                      |         |          |         |      |   |       |
| 7776293               |                      | (1997111-7                   | 10.00               | 0.00          | _                      |         |          |         |      |   |       |
|                       |                      |                              |                     |               |                        |         |          |         |      |   |       |
|                       |                      |                              |                     | \$ <u>\</u> 1 | 有力                     | 카직      | <br>Σ+h  |         |      |   |       |
|                       | 9                    | 卜力名称                         |                     | 作田市           | <sup>旦ノ]</sup><br>作用位果 | 作田市     | 加加加      | 荷重種別    |      |   |       |
|                       |                      |                              |                     | (kN/m)        | (m)                    | (kN/m)  | (m)      |         |      |   |       |
|                       | その他外力1               |                              |                     | 10.000        | 1.000                  | 5.000   | 4.000    | 偶発荷重 >  |      |   |       |
| 永続状態                  | その他外力2               |                              |                     | 9.000         | 1.100                  | 4.000   | 4.100    | 変動荷重 >  |      |   |       |
|                       | その他外力3               |                              |                     | 8.000         | 1.200                  | 3.000   | 4.200    | 永久荷重 ~  |      |   |       |
|                       | マの伸ぬもれ               |                              |                     | 5.000         | 1.300                  | 2.500   | 4.300    | 偶発荷重 >  |      |   |       |
|                       | C 00 1877774         |                              |                     |               |                        |         |          |         |      |   |       |
| L1 地震動                | ての10/1/5/4<br>その他外力5 |                              |                     | 4.000         | 1.400                  | 2.000   | 4.400    | 変動荷重 >  |      |   |       |

※「結合計算設計方法」で「限界状態設計法」を選択した場合の画面になります。

[荷重種別]

その他外力の荷重種別を「偶発荷重」「変動荷重」「永久荷重」から設定します。 限界状態による検討で、他外力による断面力に作用する荷重係数を選択した種別 で使用するようになります。

# 4-11. 限界状態

「結合計算設計方法」で「限界状態設計法」を設定した場合に入力ができるようになり ます。

| 📊 棚式係船岸5 Ver2.1.2 - サンプルデータ_H30港湾基準 |        |                 |                  | -        |    | ×  |
|-------------------------------------|--------|-----------------|------------------|----------|----|----|
| ファイル(E) データ入力(I) 設定(E) 計算(C) ヘルプ(H) |        |                 |                  |          |    |    |
| D 🖻 📕 🕎 🎒 💡                         |        |                 |                  |          |    |    |
| 圖 國 异  基本条件 計算条件 上部工 前面矢板 タイ材       | 杭寸法 腐: | ■               | <b>了</b><br>限界状態 | 展<br>模式図 |    |    |
| 部分係数                                |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          | Δ, | ルプ |
| 部材係数( γ b)                          |        | 荷重係数(γf)        |                  |          |    |    |
|                                     | γb     |                 | γf               | (γf)     |    |    |
| 押込み/引抜きせん断の検討                       | 1.30   | 土圧(水平力)・水圧、矢板反力 | 1.10             | 0.90     | _  |    |
| 軸方向力に対する検討                          | 1.00   | 土圧(鉛直力)、棚重量     | 1.10             | 0.90     | _  |    |
| 曲げモーメントに対する検討                       | 1.15   | 上載荷重            | 1.20             | 0.80     | _  |    |
| 水平方向押し抜きせん断の検討                      | 1.30   | 地震時慣性力、動水圧      | 1.00             |          |    |    |
|                                     |        | その他外力(偶発荷重)     | 1.00             |          |    |    |
|                                     |        | その他外力(変動荷重)     | 1.20             | 0.80     |    |    |
| 材料係数( ╯ m)                          | 1.30   | その他外力(永久荷重)     | 1.10             | 0.90     |    |    |
| 構造物係数(γì)                           |        |                 |                  |          |    |    |
|                                     | γi     |                 |                  |          |    |    |
| 永続状態                                | 1.10   |                 |                  |          |    |    |
| L1 地震動                              | 1.00   |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    |    |
|                                     |        |                 |                  |          |    | .: |
|                                     |        |                 |                  |          |    |    |

杭頭部の結合計算(限界状態設計法)での諸元を入力します。「水平方向押抜きせん断応力計算」は、入力した杭データの内、最も陸側の杭についてのみ検討を行い ます。

#### [部材係数]

杭頭部の各照査で用いる部材係数を入力します。

#### [材料係数]

コンクリートの材料係数を入力します。コンクリートの場合、1.30を設定します。

#### [構造物係数]

構造物係数を永続状態・L1地震動(常時・地震時)共に入力します。

#### [荷重係数]

各項目の荷重係数を入力します。荷重係数が2つあるものについては、計算内部で 構造物に危険となる方の荷重係数を採用します。

# <u>4-12. 模式図</u>

入力データより断面形状を表示します。



入力データを模式図として表示します。永続状態・L1地震動(常時・地震時)共に検 討する場合は、上載荷重切替ボタンをクリックすることにより、表示されている上 載荷重が切り替わります。

画面左下のボタン群から拡大/縮小/全体表示を行うことができます。また、拡大 /縮小はマウスホイールで行うこともできます。操作方法については、上部エデー タ編集時と同じです。そちらを参照して下さい。

# <u>5. 設計計算·報告書作成</u>

メニューより「**計算(C)/実行(S)**」を実行して下さい。設計計算を行い、帳票を作成します。 本システムでは根入れの検討、応力の検討、杭の検討で用いる土圧強度、崩壊角等を算定します。 計算が正しく終了すると計算結果を確認できます。

| 計算結果       |                        |           |               |        |          |            |                    |             |               |         |
|------------|------------------------|-----------|---------------|--------|----------|------------|--------------------|-------------|---------------|---------|
|            | 前面矢板                   | <br>タイ材   | 腹起こし          | 棚杭     |          | 寸法         | 」                  |             | 500.0×9.0t    |         |
| ▶ 永続状態     | it O                   | 0         | 0             | 0      |          | 変位量(c      | sm)                |             | 0.0           | 308     |
|            | ि<br>होत्र –           |           |               |        |          | 応力照査       | 応力照査[圧縮]           |             | 0.481 ≦       | ≦ 1.000 |
|            |                        |           |               |        | 地表面変     | 位量(        | cm)                | 0.5         | 95            |         |
|            |                        |           |               |        |          | 3.0/ /3 [深 | 度](n               | n)          | -8.           | 487     |
| 2          | 永続状態 L1 地震動            |           |               |        |          | 支持力        | 押し                 | 」込み杭        | 0.389 ≦ 1.000 |         |
|            | 永続状態                   |           |               | 相枯     |          | m•(F       | Rd+Rnf,max)/(Rp)   | 0.523 ≦     | ≦ 1.000       |         |
|            |                        | SP-5      |               | 120176 | 周面摩擦<br> | m• (F      | d+Rnf,max)/(סf•Ae) | 0.400 ≦     | ≦ 1.000       |         |
| 前面矢板       | 応力照査                   |           | 0.012 ≦ 1.000 |        |          |            | 押込断                | みせん断/ 引抜きせん | 0.584 ≦       | ≦ 1.000 |
|            | 根入れ深度(m)               |           | -2.442        |        |          | 杭頭部        |                    | 向力          | 0.187 <       | < 1.000 |
|            | 施工根入れ深度 (m)            |           | -5.700        |        |          |            | +ш/Ј               | 14171       | 0.101         |         |
| 「「「「」」「「」」 | ହମ <u>।</u>            | באלי:SS49 | 0 径:25 mm     | 1      |          |            | 曲げ                 | Eーメント       | 0.162 ≦       | ≦ 1.000 |
| 2/11/2     | 応力照査                   |           | 0.587 ≦       | 1.000  |          |            | 水平                 | 方向押し抜きせん断   | 0.017 ≤       | ≤ 1.000 |
| 8842-144   | 2[125 x 65 x 6.0 x 8.0 |           |               |        | - ·      |            |                    |             |               |         |
| 1815-017   | 応力照査                   |           | 0.659 ≦       | 1.000  |          | 1 / 2      | 列                  |             |               |         |
|            |                        |           |               |        |          |            |                    |             |               | ОК      |

計算時に注意すべき情報が表示されるメッセージです。

#### 仮想海底面の選択

| 仮想海廊 | 面の選択           |    |
|------|----------------|----|
| 常時   |                |    |
| 採用す  | る仮想海底面を選択して下さい |    |
|      | -0.525 m       | ~  |
|      |                | ОК |

前面矢板-矢板の計算方法で「フリーアースサポート法」を選択し、モーメントの計 算範囲を「棚版底面~仮想海底面の範囲」を指定し、仮想海底面を「主働側・受働側 強度のつりあい位置」を指定した場合、計算過程で仮想海底面が複数検出される事が あります。

その場合には仮想海底面の指定画面が表示されます。 その中から適切な仮想海底面を選択して下さい。

#### モーメントつりあい点の選択

| フリーアーン | スサポート法 – モ−メントつりあい点の選択 |        |  |  |  |  |  |
|--------|------------------------|--------|--|--|--|--|--|
| 地震時    |                        |        |  |  |  |  |  |
| 採用す    | るモーメントつりあい位置を選択して下さい   |        |  |  |  |  |  |
|        |                        |        |  |  |  |  |  |
|        | -3.314 m               | $\sim$ |  |  |  |  |  |
|        | -3.314 m               | ~      |  |  |  |  |  |

本システムでは計算過程でモーメントつりあい位置が複数検出される事があります。 その場合にはモーメントつりあい点の選択画面が表示されます。 その中から適切なモーメントつりあい位置を選択して下さい。

#### せん断力0点の選択

| たわみ曲 | 線法 – せん断力 0 点の選掛     | 兄 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |        |  |  |  |  |  |  |
|------|----------------------|-------------------------------------------|--------|--|--|--|--|--|--|
| 常時   |                      |                                           |        |  |  |  |  |  |  |
| 採用す  | 採用するせん断力O点位置を選択して下さい |                                           |        |  |  |  |  |  |  |
|      | -5.451 m [Mmax:      | 425.752 kN•m/m]                           | $\sim$ |  |  |  |  |  |  |
|      |                      |                                           | ОК     |  |  |  |  |  |  |

前面矢板-矢板の計算方法で「たわみ曲線法」を選択した場合、計算過程でせん断力 0点が複数検出される場合があります。 その場合には上記のようなせん断力0点の指定画面が表示されます。

その中から適切なせん断力0点を選択して下さい。

シミラリティナンバー(ω)が範囲外の可能性があります

| 矢板の計算 | 章】                                           |
|-------|----------------------------------------------|
|       | タイ材・Mmax用[常時]<br>タイ材・Mmax用[地震時]根入れ用          |
|       | 上記のシミラリティナンバー <mark>(ω)</mark> が範囲外の可能性があります |
|       | 計算を続行しますか?                                   |
|       | はい いいえ                                       |

前面矢板-矢板の計算方法で「ロウの方法」を選択した場合、本システムではシミラ リティナンバー(ω)を港湾基準のω-μの関連図を基に算定していますが、関連図 での曲線が表示しているωの範囲外に算定された場合に画面が表示されます。 ωが範囲外であってもμの計算は関連図にある式を基に算定されます。

# 腐食後のZが断面性能表の範囲外の可能性があります

|   | 【矢板の計算】  |                                                           |    |  |  |
|---|----------|-----------------------------------------------------------|----|--|--|
|   | <u> </u> | [SP-IIA ]<br>断面係数(計算) Z= 524cm3/m < 断面係数(最小) Z=約 528cm3/m |    |  |  |
|   |          | 腐食後のZが断面性能表の範囲外の可能性があります<br>計算を続行しますか?                    |    |  |  |
|   |          | (はし) しいしえ                                                 |    |  |  |
| , | マテルマ     | け鋼管結協会「鋼矢板 設計から施工まで」の鋼矢板の度合後の関                            | f, |  |  |

本システムでは鋼管杭協会「鋼矢板 設計から施工まで」の鋼矢板の腐食後の断面性 能に関する腐食代ー断面係数グラフを基に断面係数Zを算出しておりますが、腐食代 がグラフの範囲外に算定された場合に画面が表示されます。

腐食代が範囲外であってもグラフでの直線を基にして断面係数は算定されます。

#### 基準の方法による計算式の√内が負の値になりました

| 【土圧の計 | 算】                                   |
|-------|--------------------------------------|
|       | 標高:-5.500m                           |
|       | (地震時)粘性土崩壊角-基準の方法による計算式の√内が負の値になりました |
|       | 指定の崩壊角計算方法で処理を続行します                  |
|       | ОК                                   |

地震時での粘性土の崩壊角を計算する際に算定式の√内の値が負になる場合に表示されます。

この場合、基本条件ー地震時条件2で指定した方法で算定を行います。

(検討条件名)砂質土主働/受働崩壊角計算式の√内が負の値になりました

| (土圧の計)  | 算】                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------|
| <b></b> | (地震時)砂質土主働崩壊角計算式の√内が負の値になりました<br>標高: -0.500(m)<br>β: 0.0(度)<br>φ: 25.0(度)<br>δ: 15.0(度)<br>ψ: 0.0(度)<br>θ: 25.6(度) |
|         | 主働崩壊角を0.0として計算を続行しますか?                                                                                             |
|         | はい いいえ                                                                                                             |

砂質土主働(または受働)崩壊角の計算で計算式での√内の値が負の場合に問題が生じた土層の諸元と共に表示されます。

- β:地表面が水平となす角度
- δ:壁面摩擦角
- ψ:壁面が鉛直となす角度
- heta: 地震合成角
- 「はい」を選択すると計算は行いますが、エラーが生じる可能性があります。

常時-粘性土崩壊角既定値に0.0が設定されています

|    | 【土圧の計   | 笪】                            |   |
|----|---------|-------------------------------|---|
|    |         | 常時-粘性土崩壊角既定値に0.0が設定されています。    |   |
|    |         | 現在の主働土圧の計算方法で粘性土が存在する場合は必須です。 |   |
|    |         | 処理を続行しますか?                    |   |
|    |         | はい いいえ                        |   |
| += | → /€↓ ⊥ |                               | 섣 |

前面矢板-主働土圧の計算方法で「背面土と上載荷重を考慮せずに土圧を計算」以外 を選択し、基本条件-条件その2で常時での主働側崩壊角既定値が0.0で設定されて いる場合に表示されます。 「はい」を選択するとそのまま計算を行います。

最大曲げモーメントが検出されていない箇所があります

|   | 【矢板の表    | 記】(常 時)             |                  |        |       |     |
|---|----------|---------------------|------------------|--------|-------|-----|
|   | <u> </u> | 最大曲げモーメ<br>このまま続行しる | シトが検出されて<br>ますか? | こいない箇所 | があります |     |
|   |          |                     | (15)             |        | いいえ   |     |
| Z | 曲げモー     | ーメントを計              | · 笛した際に          | 最大曲(-  | ザモーメン | トがは |

矢板に作用する曲げモーメントを計算した際に、最大曲げモーメントが帳票出力時に 枠をはみ出して描画される場合に表示されます。 曲げモーメントの表記間隔を現在設定している値よりも小さい値に設定して下さい。 地震時-粘性土崩壊角既定値に0.0が設定されています

| 【土圧の計算】  |                             |  |  |  |
|----------|-----------------------------|--|--|--|
| <u> </u> | 地震時-粘性土崩壊角既定値に0.0が設定されています。 |  |  |  |
|          | ルート内が負の値になる場合に必要かも知れません。    |  |  |  |
|          | 処理を続行しますか?                  |  |  |  |
|          |                             |  |  |  |
|          | はいいた                        |  |  |  |

前面矢板-主働土圧の計算方法で「背面土と上載荷重を考慮せずに土圧を計算」以外 を選択し、基本条件-条件その2で地震時での主働側崩壊角既定値が0.0で設定され ている場合に表示されます。

地震時崩壊角の算定式での√内が負になった場合、基本条件-地震時条件2で「崩壊 角既定値で計算」以外を選択していれば「はい」を選択しても計算は行われますが、 「崩壊角規定値で計算」を選択している場合はエラーになります。

# 計算したタイロッド径が大きすぎます

| 【タイ材・腹 | 起こしの計算】                              |
|--------|--------------------------------------|
|        | (注意)-計算したタイロッド径が大きすぎます               |
|        | 処理を続行します<br>よろしいですか?                 |
|        | 指定径:100.000 (cm)<br>計算径:125.440 (cm) |
|        | <b>OK</b> キャンセル                      |

タイ材(タイロッド)の検討で計算したタイロッド径が、タイロッドの検討で指定し たタイロッド径の最大径よりも大きな値となる場合に表示されます。 「はい」を選択すると、そのまま計算を行います。

# 指定した最大の腹起こし材でも応力が入りません



指定した腹おこし材による応力照査でも応力照査で収まらない場合に表示されます。 「はい」を選択すると、そのまま計算を行います。

# <u>5-2.エラーメッセージ</u>

計算時に表示される場合があるエラーメッセージとその対処方法です。 ここに掲載されていないメッセージ等に対する対処方法は弊社までお問合せ下さい。

#### 検討ケースが選択されていません

| 入力エラ- |                 |
|-------|-----------------|
| 8     | 検討ケースが選択されていません |
|       | OK              |

基本条件-条件その1で検討ケースが選択されていない場合に表示されます。 検討条件を選択して下さい。

#### 設計震度-計算方法が正しく選択されていません

| 入力エラー |                        |  |
|-------|------------------------|--|
| 8     | 設計震度-計算方法が正しく選択されていません |  |
|       | OK                     |  |

基本条件-条件その1-設計基準で「港湾基準(H30)」を選択して、L1地震動-条件 その1で「係数により計算」が選択されている場合に表示されます。 「港湾基準(H30)」で計算を行う場合にはL1地震動-条件その1で「直接入力」を選 択して下さい。

#### ロウの方法は漁港基準では計算できません

| 入力エラー |                     |  |
|-------|---------------------|--|
| 8     | ロウの方法は漁港基準では計算できません |  |
|       | ОК                  |  |

基本条件-条件その1で設計基準を「許容応力度法(漁港基準)」、前面矢板-計算条件で矢板の計算方法を「ロウの方法」で選択している場合に表示されます。 矢板の計算方法を変更するか、もしくは設計基準を変更して下さい。

# タイ材の負担幅が設定されていません

| 入力15- |                   |
|-------|-------------------|
| 8     | タイ材の負担幅が設定されていません |
|       | ОК                |
|       |                   |

タイ材-条件でタイ材の負担幅が設定されていない場合に表示されます。 タイ材の負担幅に適切な値を入力して下さい。 追加鋼矢板の低減率が設定されていません

| 入力15- |                     |
|-------|---------------------|
| 8     | 追加鋼矢板の低減率が設定されていません |
|       | ОК                  |

前面矢板-矢板条件で矢板形式に「矢板任意指定」を指定し、かつ設定-任意矢板の 追加で矢板を任意に設定している場合、前面矢板-矢板条件で追加鋼矢板の低減率が 設定されていない場合に表示されます。 適切な追加鋼矢板の低減率を入力して下さい。

結合計算設計方法-許容応力度法は港湾基準(H30)では計算できません

| 入力エラ- |                                    |
|-------|------------------------------------|
| 8     | 結合計算設計方法-許容応力度法は港湾基準(H30)では計算できません |
|       | OK                                 |

基本条件-条件その1で設計基準に「港湾基準(H30)」を指定し、結合計算設計方法に 「許容応力度法」を選択している場合に表示されます。 設計基準または結合計算設計方法を変更して下さい。

#### 杭の縦方向の間隔が入力されていません



杭条件-計算条件で、杭の縦方向の間隔の設定値が0.0の場合に表示されます。 杭の縦方向の間隔に適切な値を入力して下さい。

#### 杭厚さ変化位置が正しく設定されていません

| 入力エラ- |                      |  |
|-------|----------------------|--|
| 8     | 杭厚さ変化位置が正しく設定されていません |  |
|       | ОК                   |  |

杭厚さ変化位置がマイナス値で設定されている場合に表示されます。杭条件ー鋼管杭 指定で杭厚さ変化位置には標高ではなく上部工下端から杭厚さ変化位置までの長さ を入力して下さい。

# 杭設置距離が正しく設定されていません



杭条件で鋼管杭指定またはH形鋼杭指定で設定した距離による杭位置が上部工構造物に入ってない場合に表示されます。

杭位置は模式図で確認して、上部工構造物内に収まるように設定して下さい 正しい設定例 間違った設定例



支持地盤が設定されていません



土質条件-主働側または棚杭計算用で最下層の土層の負の周面摩擦が「支持地盤」以 外のものが選択されている場合に表示されます。

「支持地盤」は最下層1つのみ設定して下さい。

# 例

# 土質条件-主働側

| 主働側 |                |            |     | 受働側               |                 |           |         |           |      |         |    |
|-----|----------------|------------|-----|-------------------|-----------------|-----------|---------|-----------|------|---------|----|
|     | □ 杭毎に土質定数を設定する |            |     |                   |                 |           |         |           |      |         |    |
|     | No             | 層上限<br>の標高 | 土質  | 単位体               | 積重量             | 内部<br>摩擦角 | 粘着力     | 粘着勾配<br>K | 周面摩擦 |         | N  |
|     |                | (m)        |     | [/亚)间]<br>(kN/m³) | [跑和]<br>(kN/m³) | 〔度〕       | (kN/m²) |           |      | 計算方法    | ([ |
|     | 1              | 4.50       | 粘性土 | 18.000            | 20.000          |           | 30.000  | 0.000     | 支〇負× | 道示EO→k  |    |
|     | 2              | -2.55      | 粘性土 | 18.000            | 20.000          |           | 42.000  | 0.000     | 支〇負× | 道示EO→k  | 1  |
|     | 3              | -3.45      | 粘性土 | 19.020            | 19.020          |           | 16.820  | 0.000     | 支〇負× | k=1500N | 2  |
|     | 4              | -5.15      | 砂質土 | 18.000            | 20.000          | 30.0      |         |           | 支〇負× | k=1500N | 3  |
|     | •              |            |     |                   |                 |           |         |           |      |         |    |

| 入力エラ- |                        |
|-------|------------------------|
| 8     | 土質諸元が設定されていません<br>杭1列目 |
|       | ОК                     |

土質条件で「杭毎に土質定数を設定する」を選択している場合、棚杭計算用の土質諸 元で、N値、粘着力等、K値の計算方法に必要な諸元が設定されていない場合に表示 されます。土質諸元に適切な値を入力して下さい。

#### 支持地盤が複数設定されています

| 入力15- |                 |  |
|-------|-----------------|--|
| 8     | 支持地盤が複数設定されています |  |
|       | ОК              |  |

土質条件-主働側または棚杭計算用で負の周面摩擦での「支持地盤」が複数設定されている場合に表示されます。「支持地盤」は最下層1つのみ設定して下さい。 例

## 土質条件一主働側

|   | 主働側  |            |        | 受偷              | 動側              |            |               |       |      |         |    |
|---|------|------------|--------|-----------------|-----------------|------------|---------------|-------|------|---------|----|
|   | □ 杭纳 | 毎に土質定数     | 紋を設定する | 5               |                 |            |               |       |      |         |    |
| ſ | No   | 層上限        |        | 単位体             | 積重量             | 内部         | 粘着力           | 粘着勾配  |      | レ店      | Γ. |
|   |      | の標高<br>(m) | 土頁     | [湿潤]<br>(kN/m³) | [飽和]<br>(kN/m³) | 摩擦角<br>(度) | CO<br>(kN/m²) | К     | 周囲摩孫 | 計算方法    |    |
| ľ | 1    | 4.50       | 粘性土    | 18.000          | 20.000          |            | 30.000        | 0.000 | 支〇負× | 道示EO→k  |    |
|   | 2    | -2.55      | 粘性土    | 18.000          | 20.000          |            | 42.000        | 0.000 | 支〇負× | 道示EO→k  |    |
|   | 3    | -3.45      | 粘性土    | 19.020          | 19.020          |            | 16.820        | 0.000 | 支持地盤 | k=1500N |    |
|   | 4    | -5.15      | 砂質土    | 18.000          | 20.000          | 30.0       |               |       | 支持地盤 | k=1500N |    |
|   |      |            |        |                 |                 |            |               |       |      |         |    |

# 土層最下層に支持地盤が設定されていません



土質条件-主働側または棚杭計算用で負の周面摩擦での「支持地盤」が最下層に設定 されていない場合に表示されます。「支持地盤」は最下層にのみ設定して下さい。 例

# 土質条件-主働側

| 主働側 |                |            | 受働側 |                 |                 |            |               |       |      |         |
|-----|----------------|------------|-----|-----------------|-----------------|------------|---------------|-------|------|---------|
|     | □ 杭毎に土質定数を設定する |            |     |                 |                 |            |               |       |      |         |
|     | No             | 層上限        | · … |                 | 積重量             | 内部         | 粘着力           | 粘着勾配  | 国西藤物 | к値      |
|     |                | の標高<br>(m) | 土貝  | [湿潤]<br>(kN/m³) | [飽和]<br>(kN/m³) | 摩擦角<br>(度) | CO<br>(kN/m²) | K     | 同囬摩捺 | 計算方法    |
|     | 1              | 4.50       | 粘性土 | 18.000          | 20.000          |            | 30.000        | 0.000 | 支〇負× | 道示EO→k  |
|     | 2              | -2.55      | 粘性土 | 18.000          | 20.000          |            | 42.000        | 0.000 | 支〇負× | 道示EO→k  |
|     | 3              | -3.45      | 粘性土 | 19.020          | 19.020          |            | 16.820        | 0.000 | 支持地盤 | k=1500N |
|     | 4              | -5.15      | 砂質土 | 18.000          | 20.000          | 30.0       |               |       | 支〇負× | k=1500N |
|     |                |            |     |                 |                 |            |               |       |      |         |

# 最下層標高と土圧計算範囲下限高が正しく設定されていません



土質条件で設定した最下層標高が基本条件で設定した土圧計算範囲下限高よりも大きい値の場合に表示されます。土質条件-最下層標高の値>基本条件-土圧計算範囲 下限高となるように適切な値を入力して下さい。

# 支持力に関する諸元が設定されていません

| 入力15- |                             |  |
|-------|-----------------------------|--|
| 8     | 支持力に関する諸元が設定されていません<br>杭1列目 |  |
|       | ОК                          |  |

杭条件-支持力条件で各杭の支持力に関する諸元が設定されていない場合に表示されます。各杭の支持力に関する諸元に適切な値を入力して下さい。

# 杭頭部に関する諸元が設定されていません

| 入力エラー |                              |
|-------|------------------------------|
| 8     | 杭頭部に関する諸元が設定されていません<br>杭1 列目 |
|       | ОК                           |

杭条件で結合条件(許容応力度法)または結合条件2(限界状態設計法)で各杭の杭 頭部に関する諸元が設定されていない場合に表示されます。 各杭の杭頭部に関する諸元に適切な値を入力して下さい。

# 上部工検討点に付随する土圧作用点が設定されていません

| 入力エラー |                            |  |
|-------|----------------------------|--|
| 8     | 上部工検討点に付随する土圧作用点が設定されていません |  |
|       | ОК                         |  |

上部工検討点に付随する土圧作用点が設定されていない場合に表示されます。 上部エー土圧作用点設定で設定している検討点に土圧作用点の設定を行って下さい。 土圧作用点の設定については

4-3.上部エ 12) 土圧作用点を設定/解除する をご参照下さい。

# 土圧作用点が標高降順で設定されていません



上部工で土圧作用点が標高による降順で設定されていない場合に表示します。 土圧作用点は上から順に設定していきます。土圧作用点の設定については 4-3. 上部エ 12) 土圧作用点を設定/解除する をご参照下さい。 正しい設定例 間違った設定例



土圧作用点が上から順に設定されている



土圧作用点が上から順に設定されていない

土圧作用点最上限標高が地表面天端高より大きな値となっています



上部工検討点に付随する土圧作用点で最も y 座標が大きい点が地表面天端高よりも 大きな値の場合に表示されます。

土圧作用点と地表面天端高が一致するように入力して下さい。

地表面天端高の設定は基本条件-条件その1

土圧作用点の位置の変更は上部工でそれぞれ設定して下さい。

例

| 13 14     |       | 土圧作用点  |
|-----------|-------|--------|
| A 15      | +4.00 | 地表面天端高 |
| B<br>1116 |       |        |
|           |       |        |

# 適切な打設工法が設定されていません

| 入力エラー |                   |
|-------|-------------------|
| 8     | 適切な打設工法が設定されていません |
|       | ОК                |

設定した杭の軸方向バネ定数の係数の設定によって入力不可となった鋼管杭打設工 法を選択した場合に表示されます。

支持力条件で選択可能な打設工法を選択して下さい。

# 土圧作用点最上限標高が主働側最上限標高より大きな値となっています

|     | 入力エラー |                                   |    |
|-----|-------|-----------------------------------|----|
|     | 8     | 土圧作用点最上限標高が主働側最上限の標高より大きな値となっています |    |
|     |       | OK                                |    |
| 上部  | 工検討点  | こ付随する土圧作用点で最もy座標が大きい点が主働側最上限標     | 高よ |
| りもこ | 大きな値の | D場合に表示されます。                       |    |
| 土圧( | 乍用点と主 | E働側最上限標高が一致するように入力して下さい。          |    |
| 主働  | 則最上限樽 | 票高の設定は土質条件-主働側                    |    |
| 土圧  | 乍用点の位 | 立置の変更は上部エでそれぞれ設定して下さい。            |    |

根入れ深度が正しく入力されていません

| 入力15- |                    |
|-------|--------------------|
| 8     | 根入れ深度が正しく入力されていません |
|       | ОК                 |

前面矢板ー計算条件で、根入れ深度を指定して、その根入れ深度に棚底面高以上の値 が入力されている場合に表示されます。

| 根入れ長        |      |
|-------------|------|
| 丸め単位 (m)    | 1.00 |
| 🔽 根入れ深度 (m) | 0.00 |

# 主働側(受働側)の土層の標高が逆転しています

| 【土圧の計 | 算】                |
|-------|-------------------|
| 8     | 主働側の土層の標高が逆転しています |
|       | ОК                |

土質条件-主働側または受働側で、層上限の標高が降順で入力されていない場合に表示されます。層上限の標高が降順になるように入力して下さい。

## 棚底面高と上部工座標が一致しません

| 入力エラ- |                   |
|-------|-------------------|
| 8     | 棚底面高と上部工座標が一致しません |
|       | ОК                |

基本条件-条件その1での棚底面高と上部工で設定した構成点の y 座標が全く一致 していない場合に表示されます。棚底面高と上部工構成点座標の y 座標のいずれかを 必ず一致させるように入力して下さい。

上部工構成点座標のy座標の変更手順については

4-3.上部エ 1)座標の入力・削除・修正を行う をご参照下さい。



棚底面高と上部工構成点座標が一致して いる点が存在いない



棚底面高と上部工構成点座標が一致して いる点が存在する

#### 主働側土層の開始位置が上部工天端高より上になっています

| 【土圧の計算】 |                              |  |  |  |
|---------|------------------------------|--|--|--|
| 8       | 主働側土層の開始位置が上部工天端位置より上になっています |  |  |  |
|         | ОК                           |  |  |  |

基本条件-条件その1の棚版天端高よりも土質条件-主働側の土層の最上限の標高 の値が高い場合に表示されます。

主働側の土層の最上限の標高の値は棚版天端高以下の値を入力して下さい。 例

#### 基本条件 - 条件その1

| ± | 質 | 条 | 件 | — | Ξ | 働 | 側 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

| 形状寸法         |      |  |  |  |
|--------------|------|--|--|--|
| a. 地表面天端高(m) | 4.50 |  |  |  |
| b. 矢板天端高(m)  | 2.30 |  |  |  |
| c. 棚天端高(m)   | 5.20 |  |  |  |

|  | □ 杭毎に土質定数を設定する           |      |      |              |  |  |
|--|--------------------------|------|------|--------------|--|--|
|  | No                       | 層上限  | 1.55 | 単位           |  |  |
|  | の標高 コ<br>(m)<br>1 6.80 砂 |      | 工貝   | [湿潤<br>(kN/m |  |  |
|  |                          |      | 砂質土  | 18.0         |  |  |
|  | 2                        | 0.20 | 砂質土  | 18.0         |  |  |
|  |                          |      |      |              |  |  |

土質条件-主働側での層最上限の標高が棚天端高を上回っている

受働側土層の開始位置が設計海底面位置より下になっています



基本条件-条件その1の設計海底面高よりも土質条件-受働側の土層の最上限の標 高の値が低い場合に表示されます。受働側の土層の最上限の標高の値は設計海底面高 以上の値を入力して下さい。

#### 例 基本条件-条件その1

| · /+ · |               |      |
|--------|---------------|------|
|        | d. 棚底面高 (m)   | 1.50 |
|        | e. 棚底版幅 (m)   | 4.50 |
|        | f. 設計海底面 (m)  | 0.00 |
|        | g. 海底面の傾斜角(度) | 0.0  |
|        |               |      |

| 主働 |    |            |     | 受               | 働           |
|----|----|------------|-----|-----------------|-------------|
|    |    |            |     |                 |             |
|    | No | 」 層上限 」    |     | 単位体             | 積重重         |
|    |    | の標高<br>(m) | 土貝  | [湿潤]<br>(kN/m3) | [飽;<br>(kN/ |
| İ  | 1  | -1.00      | 砂質土 | 18.000          | 20          |
|    | 2  | -2.60      | 粘性土 | 17.090          | 17          |
|    | -  |            |     | 4.0.000         |             |

矢板の打ち止め深度が土圧計算範囲下限高よりも深い位置にあります。

| 【矢板の計 | 算】                                                 |
|-------|----------------------------------------------------|
| 8     | 矢板の打ち止め深度が土圧計算範囲下限高よりも浅い位置にあります                    |
|       | 土圧計算範囲下限高 : -26.000 (m)<br>矢板の打ち止め深度 : -27.000 (m) |
|       |                                                    |
|       | ОК                                                 |

フリーアースサポート法またはロウの方法で算出された矢板の打ち止め深度が土圧 計算範囲下限高よりも深い位置にある場合に表示されます。基本条件-条件その1で 土圧計算範囲下限高に、矢板の打ち止め深度より深い値を設定して下さい。

# 粘着力Cが一値になりました

| 【土圧の計 | 算】                         |
|-------|----------------------------|
| 8     | 粘着力Cが – 値になりました<br>設計海底面位置 |
|       | ОК                         |

粘着力が一値となっている場合に表示されます。土質条件での粘着力および粘着勾 配、基本条件-条件その2の粘着基準高を確認して、適切な値を入力して下さい。

# 指定した仮想海底面位置が最大の土層位置よりも高くなっています

|                | 【土圧の計算         | 單】             |                    |              |         |            |              |              |     |                |     |
|----------------|----------------|----------------|--------------------|--------------|---------|------------|--------------|--------------|-----|----------------|-----|
|                | 8              | 指定した仮?         | 思海底面位              | 「置が最大        | の土層位    | 置よりもう      | 高くなってし       | はす           |     |                |     |
|                |                |                |                    |              |         |            | 0            | к            | ]   |                |     |
| 計算条件 -<br>算範囲を | - 矢板の<br>「棚版底」 | 計算方法で<br>面~仮想海 | ≦「フリ-<br>〕<br>底面の筆 | -アース<br>を囲」、 | サポー仮想海の | ト法」<br>底面を | を選択し<br>「任意揹 | ノ、モー<br>自定」と | -メン | · トの : 除に : では | 計仮へ |

算 と際に仮 想海底面の入力値を主働側、受働側どちらかの層の最上限の標高を上回っている場合 に表示されます。仮想海底面を「任意指定」にする場合は設計海底面高及び主働側、 受働側での層の最上限の標高の値も、それ以下の値となるように設定して下さい。 例

計算条件 - 前面矢板

| 計算条件一前面矢板                                     |    |                    | E | L質条 | 件一受        | 働側  |             |
|-----------------------------------------------|----|--------------------|---|-----|------------|-----|-------------|
| 前面矢板                                          | 土質 | フリーアースサポート法        |   |     | 主働側        |     |             |
|                                               |    | モーメントの計算範囲         |   |     |            |     |             |
| 矢板の計算方法                                       |    | ○ 棚底面高~仮想海底面       |   |     |            |     |             |
| ◉ フリーアースサポート法                                 |    | ● 棚底面高~設計海底面高      |   | No  | 層上限        | 土智  | Ì           |
| <ul> <li>○ たわみ曲線法</li> <li>○ 口中の方法</li> </ul> | _  | 仮想海底面              |   |     | の標高<br>(m) | 上貝  | - E活<br>(kN |
| 0 190 774                                     |    | ● 主働側・受働側強度のつりあい位置 |   | ▶ 1 | -5.70      | 砂質土 | 11          |
|                                               |    | ○ 任意指定             |   | 2   | -8.00      | 粘性土 | 1.          |
|                                               |    | 仮想海底面位置(m)         |   | 3   | -10.00     | 砂質土 | 11          |
|                                               |    | 永続状態 0.000         |   |     |            |     |             |
|                                               |    | L1 地震動 0.000       |   |     |            |     |             |
|                                               |    | 津波引波時 0.000        |   |     |            |     |             |

任意指定した仮想海底面位置が受働側の層の最上限の標高を上回っている

# 地震時粘性土の崩壊角が0.0のため土圧が計算できません

| 【土圧の計        | 算】                                           |
|--------------|----------------------------------------------|
| $\bigotimes$ | 地震時粘性土の崩壊角が0.0のため土圧が計算できません<br>標高: -5.500(m) |
|              | 崩壊角規定値が0.0の可能性があります                          |
|              | ОК                                           |
|              |                                              |

地震時粘性土の崩壊角が0.0になる場合に表示されます。

計算条件-土質でL1地震動/地震時の土圧強度式の√内が負になる場合に「崩壊角既 定値で計算」を選択し、L1地震動/地震時の主働側崩壊角既定値が0.0になっているの が原因です。

L1地震動/地震時の主働側崩壊角既定値の主働側崩壊角既定値に0.0以外を設定する か、または√内が負の場合の処理を「崩壊角既定値で計算」以外を選択するようにし て下さい。

| + | 質-主働土圧強度の            | 取り扱い         | 土質一主働 | カ崩壊角規コ  | 定値(度) |  |
|---|----------------------|--------------|-------|---------|-------|--|
|   | 地震時                  |              |       | 主働側崩壊角閉 | 定値(度) |  |
|   | ○(式-1)と(式-2)を比較し構造物に | 危険となる土圧分布をとる |       | 常時      | 45.0  |  |
|   | ◉ (式−1)のみで土圧を計算する    | 上記式で√内が負の場合  |       | 地震時     | 0.0   |  |
|   | ○(式-2)のみで土圧を計算する     | 崩壊角既定値 ~     |       |         |       |  |

# 湿潤単位体積重量に飽和単位体積重量よりも大きな値が設定されています



土質条件の単位体積重量 [飽和] を10.0以下の値に設定している場合に表示されます。 適切な単位体積重量 [飽和] の値を入力して下さい。

# 砂質土主働/受働崩壊角計算式の√内の分母の値が0になりました

 $\beta$ : 地表面が水平となす角度

- $\phi$ :内部摩擦角
- δ:壁面摩擦角
- ψ:壁面が鉛直となす角度

 $\theta$ :地震合成角

問題が生じた土層の諸元(内部摩擦角)等を確認して下さい。

腐食が大きすぎて腐食後の矢板の断面性能が計算できません



前面矢板ー矢板条件で設定した腐食速度によって矢板の断面諸元がマイナスになっ てしまう場合に表示されます。

フリーアースサポート法決定根入れ長の安全率/作用耐力比が計算できませんでした

| 算]- 常時                           |
|----------------------------------|
| フリーアースサポート法決定根入れ長の安全率が計算できませんでした |
|                                  |
| ОК                               |
|                                  |

このエラーが出る原因のひとつに前面矢板ー計算条件で指定する根入れ深度が極端 に高い位置に設定されている事が考えられます。

また、計算条件で「ロウの方法」を選択し、地盤反力係数(MN/m<sup>3</sup>)に極端に小さい値 を設定している場合にも表示されます。 例その1

| 前面矢板一計算条件     |      |
|---------------|------|
| □根入れ          |      |
| 丸め単位(m)       | 1.00 |
| ☑ 任意の根入れ深度(m) | 0.00 |

例その2 前面矢板一設計計算

| 비즈112 미리 开      |           |
|-----------------|-----------|
| ロウの方法           |           |
| H 0 07 7 3 7 24 |           |
| 地盤反力係数(MN/m³)   | 1.0       |
|                 |           |
| 〒Mmax﹐タイ材取付点反力( | ⑧正用断面性能── |

に高い位置に設定されている。

根入れ深度を指定して、その深度が極端 地盤反力係数が極端に小さな値で設定さ れている。

杭の傾斜角が0から30度の範囲にありません

| 【杭の計算        | ]                     |
|--------------|-----------------------|
| $\bigotimes$ | 杭の傾斜角が0から30度の範囲にありません |
|              | ОК                    |

杭条件 - 鋼管杭指定で傾斜角(度)を30度より大きい、もしくは-30度より小さ い値を設定している場合に表示されます。−30≦杭傾斜角≦30となるように入力 して下さい。−30≦杭傾斜角≦30となるように入力して下さい。

腐食しろが鋼材の肉厚を超えています

| 【杭の計算 | ]                 |
|-------|-------------------|
| 8     | 腐食しろが鋼材の肉厚を超えています |
|       | ОК                |

杭の断面諸元が正しく計算されていない場合に、その際用いられた鋼材の諸元の値と 共に表示されます。杭条件ー鋼管杭指定またはH形鋼杭指定で杭諸元に適切な値を入 力して下さい。

Qu=N/Xの分母値が0.0のため粘着力からN値が計算できません

| 【杭の計算        | 1                                |
|--------------|----------------------------------|
| $\bigotimes$ | qu=N/Xの分母値が0.0のため粘着力からN値が計算できません |
|              | ОК                               |

土質条件-K値計算方法で「粘土qu」を選択している場合、粘着力の算定に用いる qu=N/Xの分母値Xが0.0の場合に表示されます。

杭条件ー計算条件で「粘性土C->N値計算時に使用する式[qu(N/mm<sup>2</sup>)=N/X]の分母の値(X)」に適切な値を入力して下さい。

# 杭の検討 - 主働側崩壊面をなす角度が0になります



杭の検討で使用する主働側崩壊面の算定で使用する主働側崩壊角が0となる場合に表 示されます。

正しい例

主働側崩壊面が適切に処理されている (棚底面高まで達している) 間違った例

主働側崩壊面が適切に処理されていない (棚底面高まで達していない)





杭の検討 - 主働崩壊面による突出長が支持層に届いています



杭の検討で使用する主働側崩壊面の算定で、主働崩壊面が支持層に届いている場合に 表示されます。

正しい例

主働側崩壊面が支持層に届いていない

間違った例 主働側崩壊面が支持層に届いている





杭の先端が支持層内に存在しません



このエラーが出る原因のひとつに杭条件で設定した杭長が土層の上限の標高を貫入 していない事にあります。

設定した土層は必ず杭を貫入するようにして下さい。

また基本条件-条件その1で設定した土圧計算範囲下限高を貫入している場合にも このメッセージが表示されます。

| 正しい入力例     | 間違った入力例 1           | 間違った入力例2             |  |  |
|------------|---------------------|----------------------|--|--|
| 土層の上限の標高位置 | 土層の上限の標高位置          | 土層の上限の標高位置           |  |  |
| 土層の上限の標高位置 | 土層の上限の標高位置          | 土層の上限の標高位置           |  |  |
|            | 鋼管杭が全土層を<br>貫入していない |                      |  |  |
| 土層の上限の標高位置 | 土層の上限の標高位置          | 土層の上限の標高位置           |  |  |
| 土庄計算範囲下隔高  | 土任計算範囲下限高           | 土圧計算範囲下限高を<br>貫入している |  |  |
|            |                     |                      |  |  |
|            |                     |                      |  |  |



任意土圧で、該当の項目で任意土圧の作用を「する」で選択している際に、任意土圧が設定されていない場合に表示されます。

任意土圧で該当の箇所及び検討条件での任意土圧を設定して下さい。

作用位置が適切に設定されていない箇所があります

| 入力エラー |                                                |
|-------|------------------------------------------------|
| 8     | 作用位置が適切に設定されていない箇所があります<br>矢板の検討<br>主働<br>永続状態 |
|       | ОК                                             |

任意土圧で、該当の項目で任意土圧での層下限と次の標高一層上限の値が一致していない場合に表示されます。

| 高さ | 標高    | ភ្(m)  | 土圧強度(kN/m²) |        |  |
|----|-------|--------|-------------|--------|--|
| 取得 | 層上限   | 層下限    | 層上限         | 層下限    |  |
| 1  | 1.50  | 0.20   | 0.000       | 5.000  |  |
| 2  | 0.00  | -3.00  | 5.000       | 20.000 |  |
| 3  | -3.00 | -4.40  | 20.000      | 25.000 |  |
| 4  | -4.40 | -20.00 | 25.000      | 70.000 |  |
|    |       |        |             |        |  |

任意土圧で該当の箇所及び検討条件での任意土圧を設定して下さい。

# 作用位置 下限位置が上限位置よりも大きい値となる箇所があります

| 入力エラ- |                                                        |  |
|-------|--------------------------------------------------------|--|
| 8     | 作用位置 下限位置が上限位置よりも大きい値となる箇所があります<br>矢板の検討<br>主働<br>永続状態 |  |
|       | ОК                                                     |  |

任意土圧で、該当の項目で任意土圧での標高一層下限の値が標高一層上限よりも大き い値の場合に表示されます。

任意土圧で標高-層上限の値>標高-層下限の値となるように設定して下さい。

## 作用位置 下限位置が上限位置と同値となる箇所があります

| 入力エラー |                                                    |  |
|-------|----------------------------------------------------|--|
| 8     | 作用位置 下限位置が上限位置と同値となる箇所があります<br>矢板の検討<br>主働<br>永続状態 |  |
|       | OK                                                 |  |

· · · · · · · ·

任意土圧で、該当の項目で任意土圧での標高<br />
一層上限の値と標高<br />
一層下限の値が同値の場合に表示されます。

任意土圧で標高一層上限の値>標高一層下限の値となるように設定して下さい。

# 6. 帳票印刷

弊社帳票印刷プログラム「AEC帳票印刷・編集ツール」(通称:ViewAEC2007)」をプログ ラム内部から起動し、各種計算により作成された計算結果の印刷・確認を行います。印刷 イメージを画面に表示し、印刷前に計算結果やレイアウトの確認などが行えます。 ViewAEC2007は、帳票の編集を行うことが可能となっておりますが、初回起動時は編集不 可モードとして起動しまので、編集を行う際は[編集]-[編集モード]を選択し、編集可能 モードに切り替えてください。詳しくは、ViewAEC2007の操作説明書を参照してください。

# 6-1. 基本画面の説明



AEC帳票印刷・編集ツールは以下のように構成されています。

(1) 階層構造表示部

エクスプローラのように、帳票の章が表示されています。マウスで選択することで自 由にジャンプできます。

- (2) 帳票イメージ表示部 帳票の印刷イメージが常に表示されています。帳票の編集もここで行います。
- (3) メニュー部 各種の設定・操作を行います。
- (4) スピードボタン部 よく使う設定・操作の一部が割り当てられたボタンです。

現在開いている帳票をMicrosoft Office Word 2007文書(\*.docx)形式、Excelシート (\*.xlsx)形式に変換するコンバーターを起動します。本機能はMicrosoft Officeをイン ストールしていないPCでも動作致します。

注意:変換する帳票は未編集の帳票データをご使用ください。編集済み(ブロック結合や 文字列追加等)の帳票データの場合、レイアウトが乱れる場合があります。

| 2                                      | /iewAEC2007 -                                                                                                              |                          |                                     |                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                        | /iewAEC2007 -<br>ファイル(E) 編集(E) :<br>新規作成(N)<br>開く(Q)<br>印刷ファイルを追加する<br>閉じる(Q)<br>上書き保存( <u>S</u> )<br>名前を付けて保存( <u>A</u> ) | 追加( <u>A</u> )<br>5<br>) | 効果(C)<br>Ctrl+N<br>Ctrl+O<br>Ctrl+S | 表<br>して<br>Coller<br>Coller<br>Coller<br>Coller<br>Coller<br>Coller | <ul> <li>コンパートオブション</li> <li>コンパート種別</li> <li>Microsoft Office Word 2007</li> <li>Microsoft Office Excel 2007</li> <li>変換ページ</li> <li>変換ページ</li> <li>全てのページを変換</li> <li>はたまは</li> </ul> | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| •••••••••••••••••••••••••••••••••••••• | Word・Excel文書にコ<br>部品ファイル<br>部品ファイル設定                                                                                       | ンバート                     | - <del> </del>                      |                                                                     |                                                                                                                                                                                         | <ul> <li>○ 指定のページを変換</li> <li>「マル幅の設定</li> <li>⑥ 半角1文字</li> <li>◎ 半角1文字</li> <li>○ 半角2文字</li> <li>○ 細線</li> <li>○ 本書ファイル</li> <li>○ ▶</li> <li>○ ○ 細線</li> <li>○ 細線</li> <li>○ ●</li> <li>○ ●<td><u>.</u></td></li></ul> | <u>.</u> |
|                                        |                                                                                                                            |                          |                                     |                                                                     | コンバート開始 キャンセル                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

【コンバート種別】 変換する文書形式を選択します。

【変換ページ】 変換するページを指定する場合は開始ページと終了ページを指定し ます。

【セル幅の設定】 Excel形式に変換する場合の基準セル幅を指定します。

【文書ファイル】 変換後に保存する文書ファイル名を指定します。Excel変換の場合は 1シートの最大ページ数を指定します。初期値は50ページに設定され ています。

コンバート開始ボタンで指定したOffice文書形式に変換します。処理の経過を示すダイ アログの他に『コピーしています...』などのダイアログを表示する事があります。

- ※ 変換した文書ファイルはOffice2007形式です(拡張子docx/xlsx)、Office2007以前の Officeに対応するにはマイクロソフトが提供する『Word/Excel/PowerPoint 2007 ファ イル形式用 Microsoft Office 互換機能パック』が必要になります。
- ※ Ver3.2.7よりWord変換は9,10,10.5,11,12ポイントの文字サイズに対応しました。ただし、見出し文字サイズと通常文字サイズを同じ値にして下さい。非対応の文字サイズで変換した場合はレイアウトが乱れます。その場合、Word側で文字列全選択をし、文字サイズと段落サイズを変更する事でレイアウトを整えることができます。
- ※ Excel変換は9,10,11,12ポイントの文字サイズに対応しています。
## 入力データチェックリスト

計算時にシステムに入力したデータを各 項目で表示しています。



## 計算結果

前面矢板・タイ材・腹起こし・杭材におけ る検討結果を表示しています。



# <u>トライアル結果</u>

本プログラムでは、矢板/タイ材/腹起こし材を複数選択した場合、全ての検討条件 で照査を満たすまで次の部材を設定して 行います。その計算結果過程を表示してい ます。

|    | ライアル結果 |
|----|--------|
| TB | 前面矢板   |
|    | タイ材    |
| ·  | 腹起こし   |

# <u>設計条件</u>

構造物の形状寸法、照査における検討潮 位、鋼材の諸元を表示しています。



#### 矢板の設計

各検討条件における矢板に作用する外カ より、矢板の断面カを算定し、矢板の応カ 照査及び根入れ長の検討を行います。

| ■ 2 矢板の設計                             |
|---------------------------------------|
| ☆…️ 2-1 永続状態                          |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| ⊡…📑 2-2 L1地震動                         |
| ☆…1 2-3 矢板の決定                         |
| └──────────────────────────────────── |
|                                       |
|                                       |
|                                       |
|                                       |

# <u>タイ材の検討</u>

矢板の設計で算出された棚底面位置での 反力を基にタイ材の検討に用いる外力の 算定及びタイ材の検討を表示しています。

| 3   | タイロ | コッドの樽 | €≣T   |
|-----|-----|-------|-------|
|     | 3-1 | タイロッ  | ドの張力  |
| - 6 | 3-2 | タイロッ  | ドの必要径 |
|     | 3-3 | タイロッ  | ドの応力度 |

目 4-1 最大曲げモーメント
 目 4-2 腹起こしの応力度

📑 4 腹起こしの検討

#### 腹起こしの検討

タイ材の検討に用いる外力を基に腹起こ し材の検討を表示しています。

#### 外力及び棚重量の計算

杭反力の算定に使用する、上部工に作用す る外力の算定を表示しています。

| ■ 5 外力及び棚重量の計算 |
|----------------|
| □              |
| □              |
|                |
|                |
| └──            |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
| 分割図            |
| ⊡…📑 5-2 L1地震動  |

#### 杭反力の算定

外力及び棚重量の計算で算出された上部 エに作用する外力を基に、杭に作用する断 面力の算定を表示しています。



# 杭応力の検討

杭反力の算定で、算出された杭に作用する **■**7 杭応力の検討 断面力を基に、杭応力の検討を表示してい ます。

## <u>支持力の検討</u>

杭反力の算定で、算出された杭の軸力を基 に、支持力の検討を表示しています。

# 8 支持力の検討 8-1 支持力の照査式 8-2 先端抵抗力 8-3 周面抵抗力 8-4 各杭の支持力の検討 (1)永続状態 (2) L1地震動

9 負の周面摩擦の検討
 9-1 負の周面摩擦の検討

## 負の周面摩擦の検討

支持力の検討で算出された極限支持力の 設計用値(許容支持力)を基に、負の周面 摩擦の検討を表示しています。

## <u>杭とフーチングの結合計算</u>

杭反力の算定で、算出された杭に作用する 断面力を基に、杭とフーチングの結合計算 を表示しています。



本システムでは幾つかのサンプルデータを用意しております。

設計基準について

許容応力度法では

サンプルデータ\_許容応力度法. tnz

平成30年港湾基準では

サンプルデータ\_H30港湾基準.tnz

※矢板の設計-フリーアースサポート法、杭反力の算定-仮想固定点法

矢板の設計について

フリーアースサポート法では

サンプルデータ\_H30港湾基準\_フリーアースサポート法.tnz たわみ曲線法では

サンプルデータ\_H30港湾基準\_たわみ曲線法.tnz ロウの方法では

サンプルデータ\_H30港湾基準\_ロウの方法.tnz ※杭反力の算定-仮想固定点法

杭反力の算定について

仮想固定点法では

サンプルデータ\_H30港湾基準\_仮想固定点法.tnz 変位法(無限長)では

サンプルデータ\_H30港湾基準\_変位法(無限長).tnz 変位法(有限長)では

サンプルデータ\_H30港湾基準\_変位法(有限長).tnz ※矢板の設計-フリーアースサポート法 外力の算定

矢板に作用する主働土圧・受働土圧・残留水圧の算定を行います。 主働土圧及び残留水圧は棚底面高~土圧計算範囲下限高の範囲内で算出します。

 $\Box$ 

|                               |        |             | <i>n#\$(1/\$(1)</i><br>⊽ R.₩.L.<br>〒 |
|-------------------------------|--------|-------------|--------------------------------------|
| L.₩.L.<br>〒D.L.<br>///%//%%// |        |             |                                      |
| 受働土圧                          | 主<br>残 | 重働土圧<br>留水圧 |                                      |
|                               |        |             | ,                                    |
|                               |        |             |                                      |
|                               |        |             |                                      |
| 土圧計算範囲下限高                     |        |             |                                      |

ここで算出された矢板に作用する主働土圧・受働土圧・残留水圧を基に矢板の根入れ長の 検討及び、矢板に作用する断面力(曲げモーメント)の計算を行います。 矢板の計算方法は「フリーアースサポート法」「たわみ曲線法」「ロウの方法」を選択し ます。



根入れの計算では、矢板の根入れ深度を基点とした際に、主働土圧・残留水圧による曲げ モーメントと受働土圧による曲げモーメントが等しくなる矢板の根入れ深度を各検討条 件で計算します。

計算時に次のようなダイアログが表示される場合があります。

| フリーアースサポート法 – モーメントつりあい点の選択     |    |
|---------------------------------|----|
| 永続状態<br>採用するモーメントつりあい位置を選択して下さい |    |
| -2.442 m                        | ~  |
|                                 | ОК |

これは主働側のモーメントと受働側のモーメントが釣り合う位置が複数ある場合に表示 され、ここで選択した位置が、根入れ深度として採用されます。

(つり合い位置の算出)

 $\gamma_{s} \cdot M_{s} = \gamma_{R} M_{p}$ 

| 1.09(     | 7.387 X³ +  | 41.264 X² + | 69.428 X +  | 73.754)    |
|-----------|-------------|-------------|-------------|------------|
| =0.72(    | 16.023 X° + | 81.235 X² + | 110.248 X + | 45.171)    |
| .:.       | 3.485 X° +  | 13.511 X² + | 3.702 X -   | 47.869 = 0 |
| X = 1.502 | ? (m)       |             |             |            |

したがって、永続状態の根入れ深度は

D = -0.940 - 1.502 = -2.442 (m) となる

矢板の最大曲げモーメントの算出については

棚底面高~海底面高の長さの梁に主働側・受働側の荷重を作用させて海底面高及び棚底 面高の反力を計算します。



次に棚底面高における反力を用いて、棚底面高~海底面高の梁でせん断力が0となる点 を算出し、せん断力が0となる位置での荷重強度を算出します。

5) せん断力 0点の算出

| 土盾<br>(m)    | 作用力<br>P(kN/m) | ΣP<br>(kN/m) | 棚底面位置<br>反力 A。(kN/m) | せん断力<br>Q (kN/m) |
|--------------|----------------|--------------|----------------------|------------------|
| 1.50         |                |              | 12.280               | 12.280           |
| 1.50<br>0.58 | 4.878<br>9.975 | 14.853       | 12.280               | -2.573           |
| 0.58         | 4.120<br>4.260 | 23.233       | 12.280               | -10.953          |
| 0.20         | 2.446<br>2.516 | 28.195       | 12.280               | -15.915          |

せん断力Q = Α, - Σŀ

上記の表から、せん断力 0点は[ 1.500 m ~ 0.580 m]の間である したがって、せん断力 0点の位置及び荷重強度は以下のようになる

[ 10.605 + ( 10.605 + 12.042 · X)] · X  $Q = 12.280 - \cdot$ 2 = 12.280 - 10.605 · X - 6.021 · X<sup>2</sup> = 0 X = 0.797 mせん断力 0点の位置 DL = 1.500 - 0.797 = 0.703 (m) 荷重強度 P = 20.202 (kN/m²)

せん断力がOとなる位置→最大曲げモーメントが生じる位置である事から、せん断力が Oとなる位置での曲げモーメント=最大曲げモーメントを算出します。

## 6) 分布荷重によるモーメントの算出

| 番号 | ļĴ                         | Į.                     | 式            | S           |                           | M        |
|----|----------------------------|------------------------|--------------|-------------|---------------------------|----------|
|    |                            |                        |              | (kN/m)      | (m)                       | (kN⋅m/m) |
| 1  | 1/2x                       | 10.605x                | 0.797        | -4.226      | 0.531                     | -2.244   |
| 2  | 1/2x                       | 20.203x                | 0.797        | -8.051      | 0.266                     | -2.142   |
|    |                            | 計                      |              |             |                           | -4.386   |
|    | :に<br>S :水<br>I :せ<br>M :せ | 平力<br>ん断力 0点<br>ん断力 0点 | 気からの<br>気に関す | 距離<br>るモーメン | (kN/m)<br>(m)<br>⊦(kN・m/m | )        |

7) 最大曲げモーメント及び棚底面位置までの距離の算出

棚底面位置からせん断力 0点までの距離

h = 1.500 - (0.703) = 0.797 (m)

最大曲げモーメント

 $M_{\text{max}} = A_p \times h + \Sigma M = -12.280 \times -0.797 - -4.386$ 

= 5.401 (kN·m/m)

## たわみ曲線法

根入れ長の計算では、棚底面高〜根入れ深度の梁で、根入れ深度を動かして、たわみ角が Oになる位置を探します。この値に部分係数(安全率)をかけて、矢板の根入れ深度を算 出します。



(5) 根入れの計算

矢板の根入れ長を仮定し、棚底面と矢板の下端で支持される単純梁とみなし 下端のたわみ角が 0となる深さを求める

調整係数 : 1.20より

海底面から矢板下端までの深さの1.20倍の深さを根入れ長とする

海底面の高さ: 0.000(m)

| 矢板下端の<br>深さ<br>(m) | θ·ΕΙ    | 棚底面位置の<br>反力<br>(kN/m) | 矢板下端の<br>反力<br>(kN/m) |
|--------------------|---------|------------------------|-----------------------|
| 0.000              | -2.744  | 12.280                 | 15.915                |
| -1.000             | -10.241 | 20.710                 | 10.394                |
| -2.000             | -2.886  | 19.835                 | -19.969               |
| -3.000             | 44.812  | 10.384                 | -47.594               |

以上の結果から、 -2,000~ -3,000の間に、たわみ角 = 0となる深さがある
 ことがわかる
 よって、試算法により下端のたわみ角 = 0の深さを求めると以下のようになる

| 矢板下端の  | 矢板下端の | 棚底面位置の | 矢板下端の   |
|--------|-------|--------|---------|
| 深さ     | たわみ角  | 反力     | 反力      |
| (m)    | (度)   | (kN/m) | (kN/m)  |
| -2.108 | 0.000 | 19.158 | -24.239 |

したがって、根入れ長は計算値の1.20倍なので

I = 1.20 x ( 0.000 + 2.108) = 2.530 (m)

よって、永続状態の根入れ深度は

D = 0.000 - 2.530 = -2.530 (m) となる

棚底面位置の反力は、 19.158 (kN/m) となる

矢板の最大曲げモーメントは棚底面高~たわみ角が0となる根入れ深度位置の梁に主働 側・受働側の荷重を作用させて、曲げモーメントが最大となる値を採用します。 計算時に次のようなダイアログが表示される場合があります。

| たわみ曲線法-せん断力0点の選択              |    |
|-------------------------------|----|
| 永続状態<br>採用するせん断力O点位置を選択して下さい  |    |
| 0.383 m [Mmax: 11.999 kN•m/m] | ~  |
|                               | ОК |

これはせん断力O点位置が複数ある場合に表示され、ここで選択したせん断力O点位置 の最大曲げモーメントが採用されます。

(6) 最大曲げモーメントの算出

|   | 深」度     | 囲けモーメント         | せん断刀    |        |            |
|---|---------|-----------------|---------|--------|------------|
|   | (m)     | (kN⋅m/m)        | (kN/m)  |        |            |
|   | 1.500   | 0.000           | 0.000   |        |            |
|   | 1.000   | 8.002           | 12.350  |        |            |
|   | 0.580   | 11.574          | 4.305   |        |            |
|   | 0.200   | 11.627          | -4.075  |        |            |
|   | 0.000   | 10.318          | -9.036  |        |            |
|   | -0.500  | 3.584           | -16.045 |        |            |
|   | -0.940  | -3.122          | -12.997 |        |            |
|   | -1.440  | -6.989          | -1.393  |        |            |
|   | -1.940  | -3.435          | 16.688  |        |            |
|   | -2.108  | 0.000           | 24.239  |        |            |
| 툡 | 長大曲げモ∽  | -メント            |         | 11.999 | (kN · m/m) |
| 븉 | 長大曲げモ∽  | -メントの深さ         |         | 0.383  | (m)        |
| 領 | 第一曲 げモー | -<br>-メント 0点の深さ | 5       | -0.724 | (m)        |

フリーアースサポート法と同様に、矢板の根入れ深度、棚底面位置での反力、及び矢板の 最大曲げモーメントを算出します。

次に、上記で算出した矢板の根入れ深度をロウの方法により検証を行います。

(2) 矢板根入れ長

計算した根入れ深度より設計海底面からの根入れ長を計算すると以下のようになる

| = 0.000 + 2.442 = 2.442 (m) 永続状態。 L1地震動 | = 0.000 + 5.870 = 5.870 (m) ロウの方法による矢板根入れ長のチェックをおこなう δ<sub>1</sub> = D<sub>F</sub>/H<sub>T</sub>≧ 4.9510 x ω<sup>-0.2</sup> - 0.2486 永続状態 δ。= D<sub>F</sub>/H<sub>T</sub>≧ 5.0916 x ω<sup>-0.2</sup> - 0.2591 L1地震動 عاوت : 矢板の根入れ長とタイ材取り付け点から海底面までの高さの比 δ.,. DF : 矢板の根入れ長 HF : タイ材取り付け点から海底面までの高さ (m) (m) ω : シミラリティナンバー(=ρ・L<sub>k</sub>) ω : フレキシビリティナンバー(=ρ・L<sub>k</sub>) ε : 矢板のヤング係数 Ι : 矢板の単位幅当たりの断面二次モーメント L : 矢板壁の地盤反力係数 ω  $(m^3/MN)$ ø (MN/m²) (m⁴/m)  $(MN/m^3)$ 永続状態 I. = 28.0 MN/m<sup>3</sup> 2.442 m D<sub>F</sub> = H<sub>T</sub> = 1.500 m 1.500<sup>4</sup> / ( 200.0x10<sup>3</sup> x 10600x10<sup>-8</sup>)= 0.239 (m³∕MN) ρ = 0.239 x 28.0 6.692 ω = Ξ  $\delta_{*}=2.442/1.500$ Ξ 1.6280  $< 4.9510 \times 6.692^{-0.2} - 0.2486 =$ 3.1366 · · · N.G. 以上の結果から、ロウの方法では根入れ長は満足しない したがって、ロウの方法により算出されたD<sub>F</sub>/H<sub>T</sub> = 3.1366により 根入れ長を決定する  $D_F = 1.500 \cdot 3.1366 = 4.705 (m)$ 

最大曲げモーメント、棚底面位置での反カ=タイ材取付点反力はロウの方法によって値 がそれぞれ修正されます。

#### 矢板の応力度

選択された計算方法により算出した最大曲げモーメントを矢板の腐食前の断面係数で応 カ度を算定して、応力照査をしています。

表記している矢板の種類は複数選択した矢板を断面性能の小さい順で並べ替え、応力照 査を行い、全ての検討条件で照査を満たす矢板となります。

選択した全ての矢板で、全ての検討条件での照査を満たさない場合は最も断面性能が大 きい矢板となります。

#### <u>タイ材の検討</u>

矢板の照査により算定した各条件でのタイ材張力を元にして、タイロッドの検討を行い ます。タイ材張力はタイ材取付点位置での張力で、タイ材取付点位置=棚底面高になりま す。タイ材張力の算出の表記箇所は、矢板計算方法により次の項目で表記されています。



表記しているタイロッドの種類は複数選択したタイロッドを腐食前の断面性能(現況考 慮せず)の小さい順で並べ替え、タイ材の照査を行い、全ての検討条件で照査を満たすタ イ材となります。

選択した全てのタイ材で、全ての検討条件での照査を満たさない場合は最も断面性能が 大きいタイ材となります。

#### <u>腹起こしの検討</u>

上記と同じタイ材取付点反力を元に、腹起こし材に作用する最大モーメントを算出し、腹 起こしの検討を行います。表記している腹起こし材の種類は、複数選択した腹起こし材で 腹起こしの照査を行い、全ての検討条件で照査を満たす腹起こし材となります。 選択した全ての腹起こし材で全ての検討条件で照査を満たさない場合は最も断面性能が 大きい腹起こし材となります。

# <u>外力及び棚重量の計算</u>

杭に作用する外力を算定します。

杭に作用する主働土圧及び残留水圧は地表面天端高~土圧計算範囲下限高の範囲内で算 出し、それぞれの土圧が釣り合う位置を求め、その位置以浅の土圧を外力として考慮しま す。その位置以深は考慮しません。残留水圧の作用範囲も土圧と同様です。



作用力には、土圧の他に残留水圧、棚・壁体等の上部工の重量、その他外力、矢板の検討 で算出した棚底面位置での反力=矢板反力があります。

(11) 作用力の合計

|        | V (kN/m) | H (kN/m) | M <sub>R</sub> (kN⋅m/m) | M₀ (kN · m/m) |
|--------|----------|----------|-------------------------|---------------|
| 土 圧    | 5.733    | 21.395   | 25.800                  | 24.138        |
| 残留水圧   |          | 5.568    |                         | 1.949         |
| 棚,壁体   | 242.426  |          | 606.477                 |               |
| 浮 力    | -48.260  |          | -109.019                |               |
| 上載荷重   | 15.000   |          | 56.250                  |               |
| 矢板反力   |          | 22.983   |                         |               |
| その他外力1 | 10.000   | 5.000    | 10.000                  | 12.500        |
| その他外力2 | 9.000    | 4.000    | 9.000                   | 10.000        |
| その他外力3 | 8.000    | 3.000    | 8.000                   | 7.500         |
| 승 計    | 241.899  | 61.946   | 606.508                 | 56.087        |

矢板反力の算出の表記箇所について、矢板計算方法により次のようになります。

| フリーアースサポート法                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ■ 2 矢板の設計                                                                                                                                            | 4)矢板の支点反力の算出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                      | 支点間の距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                      | $I_{\tau} = 1.500 - (0.000) = 1.500 (m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                      | 仮想海底面での反力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 自 2-1-6 根入れ長の計算<br> - 自<br> 2-1-7 最大曲げモーメントの算出                                                                                                     | $R_{e} = \frac{\sum M}{I_{\tau}} = \frac{23.873}{1.500} = 15.915 \ (kN/m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                      | 棚底面位置での反力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                      | A, = $\Sigma$ S - R, = 28.195 - 15.915 = 12.280 (kN/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| たわみ曲線法<br>2 矢板の設計<br>2-11 外続状態<br>2-1-1 外続状態<br>2-1-2 特徴水圧強度<br>2-1-3 受働土圧の算定<br>2-1-3 受働土圧の算定<br>2-1-4 荷重のまとめ<br>2-1-5 根入れの計算<br>2-1-6 最大曲げモーメントの算出 | 矢板下端の       矢板下端の       御底面位置の       矢板下端の       反力       反力       反力       反力       反力       反力       反力       反力       反力       (м)       (kN/m)       (kn/m) </th |
| <ul> <li>□ ウの方法</li> <li>□ 2 矢板の設計</li> <li>□ □ 2 -1 永続状態</li> <li>□ □ 2 -2 L1地震動</li> <li>□ □ 2 -3 矢板の決定</li> <li>□ □ 2 -3-1 午板の所面性能</li> </ul>     | 永続状態<br>Ⅰ = 28.0 (MN/m³)<br>T <sub>T</sub> = 12.280 (kN/m)<br>H <sub>2</sub> = 1.500 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                      | ρ = 1.500 <sup>4</sup> / (200.0x10 <sup>3</sup> x 10600x10 <sup>-9</sup> )= 0.239 (m <sup>3</sup> /MN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                      | $\omega = 0.239 \times 28.0 = 6.692$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| □                                                                                                                                                    | $T_{e}/T_{v} = 1.8259 \times 6.692^{-9.2} + 0.6232 = 1.8716$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                      | $T_{e} = 12.280 \times 1.8716 = 22.983 (kN/m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

算定した作用力の合計値は1m当たりの値ですので、これに杭1本あたりの負担幅をかけます。この値を杭反力の算定に作用する外力として使用します。 (11)作用力の合計

|                | V (kN/m)          | H (kN/m)   | M <sub>R</sub> (kN⋅m/m) | M₀ (kN ·m/m) |
|----------------|-------------------|------------|-------------------------|--------------|
| 土 圧            | 5.733             | 21.395     | 25.800                  | 24.138       |
| 残留水庄           |                   | 5.568      |                         | 1.949        |
| 棚,壁体           | 242.426           |            | 606.477                 |              |
| 浮力             | -48.260           |            | -109.019                |              |
| 上載荷重           | 15.000            |            | 56.250                  |              |
| 矢板反力           |                   | 22.983     |                         |              |
| その他外力1         | 10.000            | 5.000      | 10.000                  | 12.500       |
| その他外力2         | 9.000             | 4.000      | 9.000                   | 10.000       |
| その他外力3         | 8.000             | 3.000      | 8.000                   | 7.500        |
| 요 하            | 241.899           | 61.946     | 606.508                 | 56.087       |
| (12) 杭の負担幅あたりの | 合力                |            |                         |              |
| 鉛直力            | : V = 2           | 41.899 x 3 | .200 = 774              | .077 (kN)    |
| 水平力            | :H =              | 61.946 x 3 | .200 = 198              | .227 (kN)    |
| 鉛直力によるモーメント    | $: V \cdot x = 6$ | 06.508 x 3 | .200 = 1940             | .826 (kN⋅m)  |
| 水平力によるモーメント    | : H·y =           | 56.087 x 3 | .200 = 179              | .478 (kN⋅m)  |

| <u>仮想固定点法</u> |                                       |
|---------------|---------------------------------------|
| 杭の諸元          | 🗎 6-1 杭の諸元                            |
|               | │ └── 📑 (1) 設計条件                      |
|               | │                                     |
|               |                                       |
|               |                                       |
|               |                                       |
|               |                                       |
|               |                                       |
| 杭反力の算定        | ■ 8-2 永続状態                            |
|               |                                       |
|               |                                       |
|               |                                       |
|               | ──  「(4) 各杭に作用する水平力及び曲げモーメント          |
|               | □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ |
|               |                                       |
|               |                                       |
|               | └──                                   |

各杭に作用する鉛直力は杭の重心及び重心から各杭までの距離を用いて算定を行います。 各杭に作用する水平力及び曲げモーメントは地盤の特性値(β)で算出した各杭の平均特 性値、杭の断面諸元を用いて算定を行います。

内訳は杭とフーチングの結合計算ー限界状態設計法で、設計用値を算出の際に用います。

# <u>変位法(無限長)</u>

| 枯の諸モ   | 🖹 6-1 柿の誘売 |
|--------|------------|
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
|        |            |
| 杭反力の算定 | ■ 6-2 永続状態 |
|        |            |
|        |            |
|        |            |
|        |            |
|        | ⊡…■ (5)内訳  |
|        |            |
|        |            |
|        |            |
|        |            |

地盤の特性値(β)で算出した各杭の平均特性値から各杭のバネ常数K1~K4を算出しま す。詳しくは**商品概説ー各杭の軸直角方向バネ定数一無限長**をご参照下さい。Kvは杭の 軸方向のバネ定数の係数a=1.0で計算を行う場合、Kv=EA/Iで算出されます。 6-2-3 各杭のバネ常数

バネ常数

|    | K,        | Kz        | Ka        | K          | Ky         |
|----|-----------|-----------|-----------|------------|------------|
|    | (kN/m)    | (kN/rad)  | (kN·m∕m)  | (kN•m/rad) | (kN/m)     |
| P1 | 9441.717  | 16642.610 | 16642.610 | 51412.730  | 193590.200 |
| P2 | 11299.030 | 17063.440 | 17063.440 | 51537.310  | 196862.300 |

ここで算出した各杭のK1~K4, Kvと杭重心から各杭までの距離等を用いて算出されたのが、つりあい方程式の係数になります。

K1~K4の計算内容に関しては**商品概説-杭の反力について-変位法-各杭の軸直角方向** バネ定数-無限長を、

Kvの計算内容に関しては**商品概説ー杭の反力について一変位法一各杭の軸方向バネ定数** をご参照下さい。 【つりあい方程式の係数】

 $A_{xx} = 20740.750000$   $A_{xy} = 0.000000$   $A_{xs} = -33706.050000$   $A_{yx} = 0.000000$   $A_{yy} = 345066.666667$   $A_{ys} = 0.000000$   $A_{sx} = -33706.050000$   $A_{sy} = 0.000000$   $A_{ss} = 599846.041000$ 杭反力及び杭頭作用力は変位法により、原点の変位は式②によって算出されます。

6-2-4 杭反力及び杭頭作用力

外力

| ,<br>水平力<br>鉛直力<br>モーメント | H =<br>V =<br>M = | 163.978<br>774.077<br>-19.352 | (kN)<br>(kN)<br>(kN・m) |
|--------------------------|-------------------|-------------------------------|------------------------|
|--------------------------|-------------------|-------------------------------|------------------------|

原点の変位

| 水平方向 | δx = | 0.86428928 | (cm)  |
|------|------|------------|-------|
| 鉛直方向 | δy = | 0.22432680 | (cm)  |
| 回転角  | α =  | 0.00045339 | (rad) |

計算の確認をする際には式①によって、算出された断面力と外力との比較で、できます。

| (H)  | $A_{xx}$ | $A_{xy}$ | $A_{xa}$ | $\left(\delta_{x}\right)$ |               | $\left(\delta_{x}\right)$     | $(A_{xx})$ | $A_{xy}$ | $(A_{xa})^{-1}$ | (H) |    |
|------|----------|----------|----------|---------------------------|---------------|-------------------------------|------------|----------|-----------------|-----|----|
| V  = | $A_{yx}$ | $A_{yy}$ | $A_{ya}$ | $\delta_{y}$ – 1          | $\rightarrow$ | $\left  \delta_{y} \right  =$ | $A_{yx}$   | $A_{yy}$ | $A_{ya}$        | V   | -2 |
| (M)  | $A_{ax}$ | $A_{ay}$ | $A_{aa}$ | $(\alpha)$                |               | $(\alpha)$                    | $A_{ax}$   | $A_{ay}$ | $A_{aa}$        | (M) |    |

原点変位を用いて、各杭の変位、各杭に作用する断面力が算出されます。計算内容に関し ては**商品概説ー杭の反力についてー変位法一原点変位(全体座標系)**をご参照下さい。

# <u>変位法(有限長)</u>

| 杭の諸元   | 📑 6-1 杭の諸元                                         |
|--------|----------------------------------------------------|
|        | ─────────────────────────────────────              |
|        | (2) 崩壊角                                            |
|        | (3) 杭の断面性能                                         |
|        | (4) 連結柿の断面性能                                       |
|        | (1) 2応の他般反力係数                                      |
|        |                                                    |
|        |                                                    |
|        |                                                    |
|        |                                                    |
|        |                                                    |
|        | ─────────────────────────────────────              |
|        | ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●              |
|        | □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□              |
|        |                                                    |
|        |                                                    |
|        |                                                    |
| 杭反力の算定 | ■ 8-2 永続状態                                         |
|        |                                                    |
|        |                                                    |
|        | <ul> <li>(3) 杭反力及び杭頭作用力</li> </ul>                 |
|        | □□□□ (4) 内訳                                        |
|        | □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□               |
|        | ■ (6) 最大モーメント及びimおきのモーメント・せん断力                     |
|        | □ (0) 4(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)     |
|        | ■ (1) 1/02/02/(11歳の)算出(多ろ他) ■ (0) 技力販売本化位単小管山(会考値) |
|        | (0/ 1)ル/2/回返1112道の算正(3/510/                        |

各杭の各層で伝達マトリクスを計算して各杭のバネ常数K1~K4を算出します。詳しくは 商品概説-各杭の軸直角方向バネ定数-<mark>有限長</mark>をご参照下さい。

Kvは杭の軸方向のバネ定数の係数a=1.0で計算を行う場合、Kv=EA/Iで算出されます。

6-2-2 各杭のバネ常数

## 第 1列

|   |       | l k     | R                  |
|---|-------|---------|--------------------|
| 層 | (m)   | (kN/m³) | (m <sup>-1</sup> ) |
| 1 | 0.505 | 0.0     | 0.000000           |
| 2 | 0.795 | 7500.0  | 0.331089           |
| 3 | 3.200 | 7500.0  | 0.331089           |
| 4 | 0.500 | 2019.0  | 0.238487           |
| 5 | 0.900 | 2019.0  | 0.245793           |
| 6 | 9.100 | 7500.0  | 0.341233           |

第 2列

| 層 | L<br>(m) | K<br>(kN/m³) | β<br>(m <sup>-+</sup> ) |
|---|----------|--------------|-------------------------|
| 1 | 1.300    | 7500.0       | 0.331089                |
| 2 | 3.200    | 7500.0       | 0.331089                |
| 3 | 0.500    | 2019.0       | 0.238487                |
| 4 | 0.900    | 2019.0       | 0.245793                |
| 5 | 9.100    | 7500.0       | 0.341233                |

バネ常数

|    | K,        | Kz        | Ka        | Ka         | Кv        |
|----|-----------|-----------|-----------|------------|-----------|
|    | (kN/m)    | (kN/rad)  | (kN·m∕m)  | (kN⋅m/rad) | (kN/m)    |
| P1 | 9291.430  | 16223.000 | 16223.000 | 50041.550  | 37783.700 |
| P2 | 11149.560 | 16645.310 | 16645.310 | 50167.040  | 38446.890 |

ここで算出した各杭のK1~K4, Kvと杭重心から各杭までの距離等を用いて算出されたのが、つりあい方程式の係数になります。

K1~K4の計算内容に関しては商品概説-杭反力について-変位法-各杭の軸直角方向バネ定数-無限長を、

Kvの計算内容に関しては**商品概説ー杭反力について一変位法一各杭の軸方向バネ定数**を ご参照下さい。

【つりあい方程式の係数】

| $A_{x x} =$        | 20440.989102  | А <sub>х ү</sub> = | 0.000000     | A <sub>×</sub> =  | -32868.310230 |
|--------------------|---------------|--------------------|--------------|-------------------|---------------|
| A <sub>yx</sub> =  | 0.000000      | A <sub>yy</sub> =  | 76230.586342 | A <sub>ye</sub> = | -795.825373   |
| A <sub>e x</sub> = | -32868.310230 | A <sub>ey</sub> =  | -795.825373  | A =               | 209980.631011 |

杭反力及び杭頭作用力は変位法により、原点の変位は式②によって算出されます。 6-2-3 杭反力及び杭頭作用力

外力

| 水平力   | H = | 163.978 | (kN)   |
|-------|-----|---------|--------|
| 鉛直力   | V = | 774.077 | (kN)   |
| モーメント | M = | -19.352 | (kN・m) |

原点の変位

| 水平方向 | δx = | 1.06050437 | (cm)  |
|------|------|------------|-------|
| 鉛直方向 | δy = | 1.01711852 | (cm)  |
| 回転角  | α =  | 0.00160640 | (rad) |

計算の確認をする際には式①によって、算出された断面力と外力との比較で、できます。

| (H) |   | $A_{xx}$ | $A_{xy}$ | $A_{xa}$ | $\left(\delta_{x}\right)$ |               | $\left(\delta_{x}\right)$     | $(A_{xx})$ | $A_{xy}$ | $(A_{xa})^{-}$ | (H) |    |
|-----|---|----------|----------|----------|---------------------------|---------------|-------------------------------|------------|----------|----------------|-----|----|
| V   | = | $A_{yx}$ | $A_{yy}$ | $A_{ya}$ | $\delta_{y}$ – 1          | $\rightarrow$ | $\left  \delta_{y} \right  =$ | $A_{yx}$   | $A_{yy}$ | $A_{ya}$       | V   | -2 |
| (M) | ) | $A_{ax}$ | $A_{ay}$ | $A_{aa}$ | $(\alpha)$                |               | $(\alpha)$                    | $A_{ax}$   | $A_{ay}$ | $A_{aa}$       | (M) |    |

原点変位を用いて、各杭の変位、各杭に作用する断面力が算出されます。計算内容に関し ては**商品概説ー変位法ー原点変位(全体座標系)**をご参照下さい。

#### <u>杭応力の検討</u>

上記で算出した各杭に作用する断面力(軸方向力、曲げモーメント)を用いて杭応力の検討を行います。尚、杭自重は考慮されません。

#### 根入れ長の算出

各杭の根入れ長の算出を行います。計算手法はΣβL≧Xを満たすものとなります。 変数Xに関してはX=3.0とし、計算方法が変位法で連結位置を設けている場合にはX=2.0 で算出を行っています。

#### <u>支持力の検討</u>

杭反力の算定で算出された各杭の軸力に杭自重を付加させた値に対して支持力の検討を 行っています。

#### <u>負の周面摩擦の検討</u>

支持力の算定で算出された永続状態における極限支持力の設計用値に対して負の周面摩 擦の検討を行っています。

# <u> 杭とフーチングの結合計算</u>

\_\_\_\_\_ 杭頭部の諸元および杭とフーチングの結合計算による検討を行っています。

| 許容応力度法                                                                                            | 限界状態設計法                                                                                        |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <ul> <li>■ 10 枕とフーチングの結合計算</li> <li>■ 10-1 設計条件</li> <li>■ 10-2 常時</li> <li>■ 10-3 地震時</li> </ul> | 10 杭とフーチングの結合計算<br>10-1 設計条件 (2) 軸方向力の設計用値 (3) 水平力の設計用値 (5) 設計用値のまとめ (6) 各種寸法 10-2 常時 10-3 地震時 |

限界状態設計法では、杭反力の算定で、内訳にある土圧、棚重量等々による断面力に荷重 係数をかけて設計用値を算出して、検討を行っています。